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(Dated: November 10, 2020)

Abstract

The connection patterns of neural circuits in the brain form a complex network. Collective signaling
within the network manifests as patterned neural activity, and is thought to support human cognition
and adaptive behavior. Recent technological advances permit macro-scale reconstructions of biolog-
ical brain networks. These maps, termed connectomes, display multiple non-random architectural
features, including heavy-tailed degree distributions, segregated communities and a densely intercon-
nected core. Yet, how computation and functional specialization emerge from network architecture
remains unknown. Here we reconstruct human brain connectomes using in vivo diffusion-weighted
imaging, and use reservoir computing to implement these connectomes as artificial neural networks.
We then train these neuromorphic networks to learn a cognitive task. We show that biologically realistic
neural architectures perform optimally when they display critical dynamics. We find that performance
is driven by network topology, and that the modular organization of large-scale functional systems is
computationally relevant. Throughout, we observe a prominent interaction between network struc-
ture and dynamics, such that the same underlying architecture can support a wide range of learning
capacities across dynamical regimes. This work opens new opportunities to discover how the network
organization of the brain optimizes cognitive capacity, conceptually bridging neuroscience and artificial
intelligence.

INTRODUCTION

The brain is a complex network of anatomically con-
nected and functionally interacting neuronal popula-
tions. The wiring of the network allows its compo-
nents to collectively transform signals representing in-
ternal states and external stimuli. Recent technological
and analytic advances provide the opportunity to com-
prehensively map, image and trace connection patterns
of nervous systems in multiple species [61, 146], yield-
ing high-resolution “connectomes” of individual brains
[10, 130]. Numerous reports have found evidence of
non-random topological attributes that theoretically en-
hance the capacity of the network to process information
[146], including high clustering and short path length
[8, 65, 131, 158], specialized segregated communities
[15, 20, 27, 52, 79, 106], heavy-tailed degree distribu-
tions [48, 129], and a core of densely inter-connected
hub nodes [143, 147, 164]. The wiring patterns needed
to support these attributes entail energetic and metabolic
cost, yielding an economic trade-off between efficient in-
formation transmission and minimal wiring cost [23].
Despite these insights, the link between macroscale con-
nectivity structure and the computational properties that
emerge from network activity is not well understood.

How does the organization of the brain confer com-
putational capacity? One way to address this ques-
tion is to relate structural connectivity to neural dy-
namics and emergent patterns of functional connectiv-
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ity [22, 119, 135, 144]. Another is to relate struc-
tural connectivity to individual differences in behaviour
[90, 96, 117]. Although both paradigms inform us about
functional consequences of network organization, they
do not explicitly consider how network organization sup-
ports information processing [64]. An alternative way
to conceptualize structure-function relationships is to di-
rectly consider function as a computational property.
Modern artificial intelligence algorithms offer new ways
to link structure and function, by conceptualizing func-
tion as a computational property [108].

A prominent paradigm to understand how artificial re-
current neural networks extract information from a con-
tinuous stream of external stimuli is reservoir computing
[80]. Also known as echo-state networks or liquid state
machines [62, 82], this computational schema typically
uses randomly connected recurrent neural networks, but
arbitrary network architectures can also be used. The
networks are trained in a supervised manner to learn rep-
resentations of external time-varying stimuli, and can be
adapted to a wide range of tasks, including speech recog-
nition [124, 151, 152], motor learning [60, 78, 113],
natural language processing [53, 142], working memory
[101, 133] and spatial navigation [3, 136]. A signifi-
cant benefit of the reservoir framework is that arbitrary
dynamics can be super-imposed on the network, provid-
ing a tool to investigate how network organization and
dynamics jointly support learning and functional special-
ization.

Here we combine connectomics and reservoir comput-
ing to investigate the link between network organization,
dynamics and computational properties in human brain
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networks. We construct neuromorphic artificial neural
networks endowed with biologically realistic connection
patterns derived from diffusion weighted imaging. We
then train these connectome-informed reservoirs to per-
form a temporal memory task. To evaluate how mem-
ory capacity depends on both network structure and dy-
namics, we parametrically tune the dynamical state of
the network, driving the network to transition between
stable, critical and chaotic dynamics. We assess mem-
ory capacity of empirically-derived connectomes against
two null models, and show that the underlying topol-
ogy and modular structure of the brain enhance memory
capacity in the context of critical dynamics. Through-
out the report, we focus on the role of intrinsic networks
[12, 32, 106, 115, 125, 141]: large-scale functional sys-
tems of the brain thought to be the putative building
blocks of higher cognition [14, 15, 145]. Finally, we sys-
tematically investigate how memory capacity depends on
the interaction between specific network attributes and
dynamics.

RESULTS

Learning in neuromorphic networks

Reservoir computing was initially proposed as a com-
putational framework to model how cortical circuits ex-
tract information from the spatiotemporal patterns of
neural activity elicited by continuous streams of exter-
nal stimuli [24]. Nowadays reservoir computing is pri-
marily used as an artificial recurrent neural network ar-
chitecture in its own right [80]. In its simplest form,
the “vanilla” reservoir computing architecture consists
of a recurrent network of interacting nonlinear neurons,
known as the reservoir, and a linear readout module. In
the present report, we use empirically-derived patterns
of human brain connectivity to constrain the connections
within the reservoir. Specifically, we apply deterministic
streamline tractography on diffusion spectrum MRI data
(n = 66 subjects. Data source: https://doi.org/10.
5281/zenodo.2872624) to reconstruct individual high-
resolution human connectomes (1015 nodes; 1000 corti-
cal and 15 subcortical regions). To reduce the impact of
false positives and false negatives, as well as the effect of
inconsistencies in the reconstruction of subject-level con-
nectomes on network measures, we generate group-level
consensus networks that retain the topological character-
istics of individual subject networks [19, 33, 110].

We use the reservoir framework to quantify the capac-
ity of individual brain regions to encode temporal infor-
mation during a memory task (Fig. 1a). In this task a uni-
formly distributed temporal signal is introduced into the
reservoir through a set of input nodes (blue). The signal
propagates through the network, giving rise to complex
patterns of neural activity across the reservoir. The activ-
ity time-series of a set of readout nodes (purple) within
the reservoir are then used to train a readout linear unit

to reproduce a delayed version of the input signal. Per-
formance in this task thus depends on the ability of the
readout nodes to encode the temporal properties of the
external stimuli. In other words, performance depends
on the ability of readout nodes to represent past and
present inputs in their current activation state, which we
refer to as memory capacity (see Methods for details).

We selected readout nodes using intrinsic networks,
[12, 32, 106, 125, 141] (Fig. 1b). Intrinsic networks are
a connectivity-based partition of the brain into groups
of areas with coherent time courses and similar function
[159]. As such, they are thought to represent the puta-
tive building blocks of higher cognition, and provide a
convenient and meaningful way to divide the brain into
large-scale systems. In the present study, we measured
the memory capacity of the brain across seven intrinsic
networks reported by Yeo, Krienen and colleagues [141].
Subcortical regions were set as input nodes for all experi-
ments (results using alternative input nodes are shown in
Sensitivity Analysis). To provide confidence intervals for
the memory capacity estimates of intrinsic networks, we
generate 1000 group-consensus matrices by bootstrap re-
sampling individual subjects (see Methods for details).

The computational properties of the reservoir depend
on both its architecture and its dynamics [25, 87]. Here,
the reservoir consists of a recurrent neural network of
discrete-time, nonlinear threshold units. We parametri-
cally tune the dynamics of the reservoir by scaling the
largest eigenvalue of the connectivity matrix (parame-
ter α; see Methods). The dynamics of the reservoir are
considered to be stable when α < 1, and chaotic when
α > 1. When α ≈ 1 the dynamics are said to be critical
or at the edge of chaos [118]. Fig. 1c shows the mean
(solid lines) memory capacity and the standard deviation
(shaded regions) across bootstrapped samples for each
of the seven intrinsic networks as a function of α. As
expected, the memory capacity is greater when the dy-
namics of the reservoir are stable (α < 1), and decreases
as the dynamics evolve towards a chaotic state (α > 1)
[118]. Maximal memory capacity is attained when the
dynamics of the reservoir are at the transition between
the stable and chaotic regimes (α ≈ 1). This general be-
haviour is observed across all the intrinsic networks, with
more prominent differences between them in the chaotic
regime. The greater within-system variability in memory
capacity at α > 1 is consistent with the notion that the
system is in a chaotic state, while capacity in the stable
regime is less variable.

Memory capacity of the human connectome

We first assess how memory capacity depends on con-
nectome architecture and dynamics. We averaged the
memory capacity across functional systems to provide an
overall estimate for the memory capacity of the brain.
Fig. 2a shows the distribution of mean memory capacity
across functional systems as a function of α. Consistent
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Figure 1. Measuring the memory capacity of biological neural networks | By using biologically-inspired connectivity measures
obtained from MRI connectomics data, we leverage reservoir computing models to investigate the effect of network architecture
on the encoding capacity of large-scale brain networks in a memory task. (a) In a memory task, a uniform random input signal
(u(t)) is introduced to the reservoir through a set of input nodes (blue nodes). The input signal propagates through the network,
activating the states of the units within the reservoir. The activation states (reservoir states x(t)) of the readout nodes (purple
nodes) are then retrieved from the reservoir, and are used to train a linear model to reproduce a delayed version of the input
signal at different time lags (Y = u(t − τ)). Memory capacity (MC) is estimated as the sum across time lags (τ) of the absolute
correlation (R) between the predicted (Ŷ ) and the time-lagged target signal (Y ). The dynamics of the reservoir are controlled
with α, a parameter that scales the spectral radius (largest eigenvalue) of the connectivity matrix, while uniformly modifying its
coupling strength. A memory capacity estimate is obtained for every value of α. (b) Lateral projection (right hemisphere) of the
Yeo-Krienen intrinsic network partition [141]. The procedure described in (a) was independently applied to each of the seven
intrinsic networks. (c) Distribution (across bootstrapped consensus matrices; see Methods for details) of the memory capacity as a
function of α for each of the seven intrinsic networks.

with the results from the previous section, we find the
greatest performance close to the edge of chaos, with
memory capacity generally > 0.8 at α values close to
1. We next ask how performance depends on network
topology and on the modular organization captured by
the intrinsic networks.

To assess the extent to which memory capacity de-
pends on the underlying network topology, we con-
structed a population of null networks by randomly
rewiring pairs of edges in the structural network, pre-

serving the density, degree sequence and the intrinsic
network assignment of the nodes ([86]; Fig. 2b). Using
this null model, we performed the same memory task to
measure the memory capacity of each of the seven func-
tional systems, and then averaged across them to provide
a network-level memory capacity estimate. This proce-
dure was applied on 1,000 rewired networks to construct
a distribution of the memory capacity of the network un-
der the null hypothesis that network memory capacity is
independent of the underlying connectivity patterns. We
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then compare brain networks against the rewired models
using the Wilcoxon-Mann-Whitney two-sample rank-sum
test. We find that empirical brain networks have sig-
nificantly better performance than rewired networks at
criticality (medians in empirical and rewired networks
are 0.92 and 0.80, respectively, Prewired < 10−4 two-
tailed, and effect size = 99%; Fig. 2a); at other dynami-
cal regimes (stable and chaotic), the connectome gener-
ally has lower capacity. Altogether, these results suggest
that connectome topology optimally functions as a reser-
voir when dynamics are critical or at the edge of chaos.
We next sought to assess whether the partition of the
connectome into seven intrinsic networks is functionally
meaningful. To do so, we used a spatially-constrained
label-permutation null model that randomly permutes
intrinsic network labels while preserving their spatial
autocorrelation, testing the hypothesis that the mem-
ory capacity of the brain depends on its functionally-
defined modular structure, and not on trivial differ-
ences in size, coverage or symmetry of intrinsic networks
([1, 85]; Fig. 2c). Again, we use the Wilcoxon-Mann-
Whitney two-sample rank-sum test to compare the em-
pirical intrinsic network partition against the spatially-
constrained permutation model at the edge of chaos. We
find that the partition provided by empirical intrinsic net-
works significantly outperforms the spatially-constrained
label-permutation model at criticality (medians in the
empirical and permuted partitions are 0.92 and 0.89, re-
spectively, Pspin < 10−4 two-tailed, and effect size =
88%; Fig. 2a), as well as in the chaotic regime. This
suggests that the modular organization of the brain in
functional systems defined by intrinsic networks consti-
tutes a computationally-relevant feature of the human
connectome [14, 15].

Connectomes optimize computation-cost trade-offs

Previously, we observed that the human connectome
outperforms the rewired model only when the dynam-
ics are critical. In the stable and chaotic regimes, ran-
domly rewired networks outperform the empiricallly-
derived architecture (Fig.2a). However, this null model
does not account for the fact that the brain is a spatially-
embedded network, with finite metabolic and material
resources [23, 132]. As a result brain networks are char-
acterized by a prevalence of shorter, low-cost connec-
tions [57, 109]; by contrast the random flipping of edges
in rewired networks skews the connection length distri-
bution towards longer connections resulting in networks
with greater wiring cost than empirical brain networks
(Fig.3a) [18, 20]. Fig.3b shows memory capacity of real
and rewired networks, normalized by wiring cost. When
we account for the cost of wiring, empirical connectomes
outperform rewired networks across the three dynami-
cal regimes, suggesting that brain network topology opti-
mizes the trade-off between computational capacity and
cost.

Memory capacity of intrinsic networks

We next investigate the memory capacity of individ-
ual functional systems. Fig. 4a shows the distribution
of memory capacity of individual intrinsic networks,
as well as the corresponding null distributions gener-
ated by rewiring and spatially-constrained label per-
mutation. Performance is stratified according to dy-
namical regime, from stable (mean performance for
α = [0.3, 0.5, 0.7, 0.8, 0.9]) to critical (performance
for α = 1.0) to chaotic (mean performance for α =
[1.5, 2.0, 2.5, 3.0, 3.5]). To establish a clearer distinc-
tion between the critical and the chaotic regimes, we
selected α values above 1.5 to characterize chaotic dy-
namics (results for intermediate values of α in the range
1.1 to 1.5 are provided in Fig.S1). Throughout subse-
quent analyses, dynamical regimes are defined using the
same ranges across α values provided here.

We use the Wilcoxon–Mann–Whitney two-sample
rank-sum test to compare the performance of empirical
intrinsic networks against their analogues in the rewired
and label-permutation null models. Consistent with the
intuition gleaned from the global performance shown in
the previous section, we find significantly greater mem-
ory capacity for most functional systems in the criti-
cal regime, at the edge of chaos (mean memory ca-
pacity > 0.9 for all networks), but poorer or incon-
sistently better performance in the stable and chaotic
regimes (across dynamical regimes, Prewired < 0.05 and
Pspin < 0.05 two-tailed, compared to the rewired and
the label-permutation models, respectively).

How do functional systems compare with each other in
terms of memory capacity? Making direct comparisons
between intrinsic networks is challenging, as memory ca-
pacity in individual networks will be partially driven by
features such as network size (i.e., number of nodes) and
number of internal connections (S2) [56, 167]. To ac-
count for differences among networks due to density, we
normalize their memory capacity by their relative con-
nection density (see S2).

Fig. 4b shows the density-normalized network-specific
memory capacity at each of the three dynamical regimes.
In the critical regime, we observe few differences among
networks, with the greatest memory capacity in the
limbic network, perhaps reflecting an anatomically-
mediated predisposition for memory encoding [11, 97,
98, 116, 160]. In the stable and chaotic regimes we
observe diametrically opposite orderings, such that net-
works with greater capacity in the stable regime have
lower capacity in the chaotic regime, and vice versa.
This suggests an interplay between network topology, dy-
namics and memory capacity, a phenomenon we study
in greater detail in a subsequent section. Interestingly,
the axis or trend line along which the memory capacity
of intrinsic networks fluctuates in these regimes broadly
resembles the putative unimodal-transmodal hierarchy
[58, 84, 92, 93], differentiating sensory networks (visual
and somatomotor) from association networks (default
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Figure 2. The unique features of the connectome drive memory capacity in the critical state | (a) Distribution (across
bootstrapped consensus matrices) of the memory capacity of the human connectome (magenta) as a function of α. Whole-brain-
level memory capacity estimates were calculated as the average memory capacity across intrinsic networks. At the edge of chaos
(α = 1), memory capacity of the human connectome is optimal compared to two alternative null models ((b) and (c); cyan and
yellow, respectively). (b) To determine whether memory capacity estimates depend on the underlying connectivity structure, a
null distribution is constructed by randomly rewiring pairs of edges, while preserving network size, density, degree sequence and
node-level intrinsic-network assignment (cyan in panel (a); referred throughout the text as rewired) [86]. (c) To evaluate the
extent to which the partition of the connectome into seven intrinsic networks is relevant for the task at hand, a null distribution
is constructed by spherical projection and random rotation of the intrinsic network labels, preserving their spatial embedding and
autocorrelation (yellow in panel (a); referred throughout the text as spin) [1, 85].



6

Figure 3. Accounting for the cost of wiring | (a) Connection length distribution for a sample consensus network (magenta)
compared to a sample rewired network (cyan). Euclidean distance between brain regions was used as a proxy for connection
length. (b) Memory capacity to wiring cost ratio. The wiring cost was estimated as the sum of the connection lengths weighted by
the connectivity values, which are proportional to the number of streamlines between brain regions. When the wiring cost is taken
into account, the empirical network outperforms the rewired null model across all dynamical regimes.

and frontoparietal), suggesting a potential link between
the hierarchical organization of the cortex and cognitive
capacity [139, 164].

Information transfer across the brain

The performance of intrinsic networks in the memory
task provides a measure of how the macroscopic human
connectome supports temporal information storage. This
metric, however, tells us little about how information
changes as it travels from one region to the other in the
brain. We thus next investigate how temporal informa-
tion content (i.e., memory capacity) is transformed as
signals propagate through the connectome during learn-
ing. Specifically, we compare the memory capacity of
each intrinsic network in an encoding and a decoding ex-
perimental set up (Fig. 5a). For encoding, we measure
the memory capacity of the information sent by the net-
work to the rest of the brain, that is, the signals gener-
ated by the network itself. For decoding, we measure the
memory capacity of the information received by the net-
work, that is, the signals generated by its directly con-
nected neighbours. We call these metrics the encoding
and decoding capacity, respectively, of an intrinsic net-
work (see Methods for interpretation, rationale and fur-
ther considerations on these metrics).

Differences between encoding and decoding capacity
quantify the extent to which temporal information con-
tent is transformed as signals travel through a functional
network [122]. The key finding is that connectome
topology supports functional specialization by promoting
regional heterogeneity of temporal information content.
To determine whether encoding and decoding are sta-
tistically different from one another, we conduct a two-

tailed, one-sample t-test under the null hypothesis that
the mean of the difference between encoding and de-
coding capacity is equal to zero (H0 : µenc.−dec. = 0).
In favor of regionally heterogeneous dynamics, we find
that, across all dynamical regimes, the encoding - de-
coding differences of intrinsic networks are significantly
different from zero (P < 10−4, Bonferroni corrected).
Fig. 5b shows the effect size of the difference between
the encoding and decoding capacity of intrinsic networks
across dynamical regimes. We quantify effect size as the
Cohen’s D estimator consistent with a one-sample t-test
for means (H0 : µenc.−dec. = 0). We use this measure
to compare the empirical network against the rewired
and label-permutation models. Importantly, across all
functional systems and dynamical regimes, we observe
significantly greater asymmetry between encoding and
decoding for the empirical connectome compared to the
rewired and spatially-constrained null models. This sug-
gests that both the brain’s network connectivity, and its
modular organization into large-scale systems, play a
role in optimizing how information is transformed as sig-
nals propagate through the connectome, thus promoting
regional heterogenity and supporting functional special-
ization.

At criticality – when overall connectome performance
is optimal – we observe smaller but still significant differ-
ences between encoding and decoding. The reduction in
the difference between encoding and decoding capacity
at the critical point suggests a homogenization of infor-
mation content across the connectome (integration). At
the same time, the magnitude of the difference between
encoding and decoding is significant (minimum absolute
effect size > 0.25), indicating a heterogeneous distribu-
tion of information across functional networks (segrega-
tion). In other words, at the critical point, there exists
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Figure 4. Generalized optimal memory capacity across intrinsic networks | (a) At the edge of chaos, memory capacity esti-
mates of the empirical network are consistently and significantly higher and optimal across functional systems, compared to their
analogue estimates computed on the rewired and spatially-constrained null models. In other words, optimal performance of the
human connectome in the critical state is not driven by a few networks, but is rather generalized across the brain. (b) Memory
capacity in recurrent neural circuits largely depends on the size of the network and the amount of positive feedback, which are
in this case proportional to the number of nodes and the number of internal connections, respectively [56]. A direct and fair
between-network comparison would require removing the effect of these factors from the memory capacity estimates of individual
networks. Using a linear model, the effect of relative connection density was regressed out (see S2 for further details). To facilitate
the comparison, memory capacity estimates were scaled between 0 and 1 using the minimum and maximum values within each
dynamical regime. When compared to each other, memory capacity is in general quite homogeneous across functional systems
in the critical regime, but it is highest for the limbic system, maybe reflecting an anatomically-mediated predisposition for mem-
ory encoding [11, 97, 98, 116, 160]. Interestingly, in the stable and chaotic regimes, memory capacity estimates differentiate
somatosensory from higher association areas [58, 84, 92, 93].
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a balance between integration and segregation of the in-
formation across the connectome [127, 128]. Interest-
ingly, the functional system with the greatest difference
between encoding and decoding capacity at criticality is
the limbic system, again suggesting an anatomical basis
for the well-studied involvement of this system in mem-
ory function [11, 97, 98, 116, 160].

Finally, it is noteworthy that most functional systems
are computationally flexible, performing better as de-
coders in the stable regime (decoding > encoding), and
better as encoders in the chaotic regime (decoding >
encoding). This is the case for all intrinsic networks (vi-
sual, somatomotor, dorsal attention, limbic and fronto-
parietal; Fig. 5b, top panel), except the ventral attention
and the default mode network systems. Interestingly,
the default mode network is the only functional system
that acts as a decoder in both the stable and the chaotic
regimes, while its encoding capacity is expressed only
at criticality, consistent with contemporary theories that
this functional system supports global monitoring and in-
formation integration [40]. Overall, results suggest that
topology and dynamics interact to support switching of
the direction in which temporal information content ac-
cumulates in functional networks, endowing these sys-
tems with computational flexibility.

Interplay between network topology, dynamics and
memory capacity

A recurring theme in the previous sections was that
memory capacity depends on the interaction between
network topology and dynamics. Here we relate memory
capacity to multiple (local- and global-level) attributes
of the connectome graph across the three dynamical
regimes. Fig. 6a shows the (distribution of) correlations
between memory capacity and local graph attributes; at-
tributes are first computed for individual nodes and then
averaged within intrinsic networks. Fig. 6b shows the
correlations between memory capacity and global graph
attributes. All graph properties were computed using
the weighted structural connectivity network. Briefly,
graph attributes include measures of “connectedness
(strength), clustering, centrality (betweenness), connec-
tion diversity (participation), global efficiency (charac-
teristic path length), and modularity (see Methods for
definitions).

We note three key results. First, we observe moder-
ate to high correlations between graph attributes and
memory capacity, suggesting that network structure in-
fluences performance. Second, the direction of that in-
fluence depends on the dynamics, with correlation signs
switching from one regime to another. In other words,
structure does not simply drive dynamics, and thus per-
formance. Rather, structure and dynamics interact to
drive performance. Third, at criticality, memory capac-
ity is much less dependent on the topology, compared to
the stable and chaotic regimes, where the correlations

are typically greater. That is, at criticality, memory ca-
pacity transcends topological features and becomes more
dependent on global network dynamics.

Sensitivity analysis

Throughout our analyses, subcortical regions, which
include structures such as the thalamus, the basal gan-
glia, the hippocampus, the amygdala and the brain
stem, served as input nodes in all experimental set ups.
Nevertheless, not all these regions actually constitute
biologically-plausible relay stations for incoming sensory
signals. From all the subcortical structures, the thalamus
is known to play an important role in relaying sensory
and motor signals from the rest of the body to the cere-
bral cortex and to other cortical structures [120]. There-
fore, we repeated our analyses under a more realistic
experimental set up that considers only those subcorti-
cal regions comprising the left and right hemisphere sec-
tions of the thalamus. Results are shown in Fig. S3 and
S4. Although memory capacity estimates change from
one type of experimental set up to the other, the hu-
man brain network still displays maximum and optimal
memory capacity in the critical state compared to the
rewired (Prewired = 0.0 and effect size = 99% two-tailed,
Wilcoxon-Mann-Whitney two-sample rank-sum test) and
label-permutation (Pspin = 0.0 and effect size = 99%
two-tailed, Wilcoxon-Mann-Whitney two-sample rank-
sum test) models. This is true for the whole brain, and
also for individual intrinsic networks. In fact, under this
more realistic scenario, statistical significance and effect
sizes are even stronger.

Likewise, all analyses presented thus far were con-
ducted on a particular parcellation of brain regions. We
repeated our analyses at a lower resolution parcellation
(448 cortical and 15 subcortical regions) to assess the ex-
tent to which our results depend on network scale. Re-
sults are shown in Fig. S5 and S6. At this lower scale, the
overall memory capacity of the brain in the critical state
is still statistically higher compared to the rewired and
label-permutation models. However, this is not the case
for all intrinsic networks. The ventral attention, limbic
and default mode network systems display statistically
higher performance compared to the null models. The
visual and somatomotor systems present a statistically
higher performance compared to the rewired model, but
significantly lower performance compared to the label
permutation model. Finally, both the dorsal attention
and fronto-parietal networks present statistically lower
performance compared to the rewired null model, but
only the fronto-parietal system presents a significantly
higher performance compared to the label permutation
model. Memory capacity is a property that is strongly
tied to the underlying within-network connectivity and
relative density of each intrinsic network. Because con-
nectivity details involving these two factors can be eas-
ily dismissed when the networks are reconstructed at a
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Figure 5. Encoding and decoding capacity of functional systems | The difference between the encoding and decoding capacity
of a network quantifies the extent to which information is transformed as it propagates through the network. (a) The encoding
(decoding) capacity of a network is equivalent to its memory capacity when it operates as an encoder (decoder). The coding role
of the network is determined by the selection of the readout nodes. In the encoding setup (top panel) readout nodes are the nodes
that belong to the network; they are a proxy for the information sent by the network. In the decoding setup (bottom panel) readout
notes correspond to the direct neighbours of the network; they are a proxy for the information received by the network. (b) Bar
plots show the effect size of the difference between encoding and decoding, quantified as the Cohen’s D estimator consistent with a
1-sample t-test. Compared to the rewired and spatially-constrained null models, the human connectome presents overall a higher
encoding - decoding asymmetry.

lower resolution parcellation (since each brain region oc-
cupies now a larger volume), subtle differences found at
the intrinsic network level are not surprising.

DISCUSSION

In the present report we used reservoir computing to
study how network structure and dynamics shape learn-
ing and computations in networks with architectures
based on the human connectome. Using neuromorphic
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Figure 6. Contribution of network topology to memory capacity is a function of the dynamics | Local and global topological
attributes interact with network dynamics to shape the memory capacity of the human connectome. (a) Correlation between
local network topology and the memory capacity of intrinsic networks across dynamical regimes. Local features, including node
strength, clustering coefficient, betweenness centrality and participation coefficient, were estimated at the node level and then
averaged within each intrinsic network. Left column shows the distribution (across bootstrapped samples) of the Spearman
correlation between average local network properties and the memory capacity of intrinsic networks. Right column shows the
scatter plots of memory capacity vs network attributes; markers (error bars) represent the average (standard deviation) across
bootstrapped samples. (b) Correlation between global network topology and memory capacity of the human connectome across
dynamical regimes. Global features include characteristic path length, transitivity and modularity.

neural networks, we show that empirically-derived ar-
chitectures perform optimally at criticality, and excel at
balancing the trade-off between adaptive value and cost,
regardless of the dynamical regime. We find that perfor-
mance is driven by network topology, and that the modu-
lar organization of large-scale functional systems is com-
putationally relevant. Throughout, we observe a promi-
nent interaction between network structure and dynam-
ics, such that the same underlying architecture can sup-
port a wide range of learning capacities across dynamical
regimes.

By studying artificial neural networks with
connectome-based architectures, we begin to reveal
the functional consequences of brain network topology.

Numerous studies point to a unique set of organizational
features of brain networks [7, 112, 130, 146], but
how these features influence the neural computations
that support cognition remains unknown. By training
networks with biologically-realistic connectivity to per-
form a simple memory task, we show that connectomes
achieve superior performance compared to populations
of networks with identical low-level features (density,
degree sequence) but randomized high-level topology.

The present work highlights a symbiotic relationship
between structure and dynamics. Namely, the unique
topological features of the brain support optimal perfor-
mance only when dynamics are critical, but not when
they are stable or chaotic. Multiple accounts posit that
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the brain, akin to many other naturally occurring com-
plex systems, operates at the interface of order and dis-
order. In this critical regime, at the “edge of chaos”, dy-
namic transitions are optimized, and thought to confer
adaptive benefits, including greater dynamic range and
selective enhacement of weak inputs [50, 121, 150]. In
addition, multiple empirical studies have demonstrated
that neural dynamics exhibit fluctuations consistent with
a networked system at criticality [28, 35, 69, 137].

In the context of reservoir computing, a link between
the computational power of the reservoir and the edge of
chaos has been established in multiple theoretical stud-
ies [16, 72, 74, 75]. The reservoir has the potential to
work as a universal function approximator as long as it
can hold (memory) and nonlinearly transform (separa-
tion) information about past external stimuli in its high-
dimensional transient states [81]. The balance between
these two properties, namely the fading memory prop-
erty, which is enhanced by stable dynamics, and the sep-
aration property, which is supported by chaotic dynam-
ics, is optimal at the edge of chaos. At this critical point,
where the transition between stable and chaotic dynam-
ics occurs, the perfect balance between order and disor-
der delivers the optimal trade-off between memory and
separation. The fact that brain networks perform better
at criticality (compared to the rewired network model)
suggests that network topology may be configured to ne-
gotiate that optimal trade-off between these two com-
putational properties, and therefore maximize computa-
tional capacity.

Computational power and information processing,
however, might not be the only features that brain net-
works seem to optimize. The brain is a spatially em-
bedded network with finite metabolic and material re-
sources, and as such, there are physical demands that
biological networks should satisfy [23]. For instance,
the growth and maintenance of axonal projections en-
tails material and energetic costs. These wiring costs
increase with the length of inter-neuronal connections
and manifest as a prevalence of short-range connections
[57, 109]. Therefore, studies of the computational, topo-
logical and dynamical features of the brain must also
consider the cost imposed by its geometrical constraints
[17, 20, 65]. A salient finding in the present report is
that, when wiring cost is taken into account, brain net-
works outperform randomized networks in all dynami-
cal regimes. The fact that empirical networks achieve
higher computational power per unit cost compared to
the rewired networks supports the idea that brain net-
works are highly economical: they maximize adaptive
value while minimizing wiring cost [9].

From an engineering perspective, these results
present a new direction for designing neuromorphic or
biomimetic artifical neural networks. Deep artificial neu-
ral networks have myriad applications in modern ma-
chine learning and artificial intelligence. Despite su-
perficial similarity with macro-level connectivity in the
brain, architectural design of deep networks is typically

ad hoc and problem-specific. Moreover, there are in-
creasing efforts in both academia and industry to de-
velop next-generation neuromorphic hardware devices
and chips. One such effort is the construction of phys-
ical reservoirs [138]. These include reservoirs built from
analog circuits [6, 77, 126, 166], field-programmable
gate arrays (FPGA; [1, 2, 4, 5, 156]), very large-scale
integration circuits (VLSI; [103, 105, 111]), memristive
networks [13, 41, 68, 71, 123, 134, 161], and photonic
or opto-electronic devices [66, 67, 73, 148, 149, 165].
The architectures of these algorithms and systems, how-
ever, rarely take advantage of emerging understanding
of connection patterns in biological networks. We envi-
sion that the present work serves as a foundation for fu-
ture efforts to design biologically-inspired artificial neu-
ral networks and physical neuromorphic hardware. Due
to their physical nature, neuromorphic systems are con-
ditioned to similar material and energetic costs as biolog-
ical neural networks. Because of this, the cost-effective
design of these information processing systems could
largely benefit from insights gained about the econom-
ical principles of brain network organization [9]. Ulti-
mately the present paradigm could be used to system-
atically map combinations of network attributes and dy-
namical regimes to a range of computational functions,
and may ultimately help to identify design principles for
engineering better networks and circuits.

More broadly, the present work addresses the ques-
tion of the structure-function relationship in the brain,
but with a focus on computation. Over the past 20
years, multiple forward models have been proposed to
link structural connection patterns to functional connec-
tion patterns [135], including statistical models [91, 94],
communication models [30, 43, 45, 95] and neural mass
models [22, 34, 54, 114]. These models have been
successful in predicting an array of empirical phenom-
ena, including static and dynamic functional connec-
tivity [55]. However, these models are largely phe-
nomenological, and focused on predicting an emergent
property of the system (intrinsic functional connectivity),
rather than explaining how the system computes and ap-
proximates functions in the external environment. The
present work represents a step towards mapping network
structure more directly to its computational function.

In particular, we provide evidence that the intrinsic
networks of the brain constitute computationally rele-
vant systems. Despite their widespread use as a frame
of reference in cognitive neuroscience, their precise cog-
nitive function is not completely understood. Although
they are typically labeled based on prior domain knowl-
edge from functional neuroanatomy [145], these net-
works are primarily defined as groups of neuronal popu-
lations with coherent time courses. Multiple studies have
reported correlations between the expression of these
networks and individual differences in behaviour [89],
but how they contribute to computation in the brain
is unknown. The present results demonstrate that im-
posing this intrinsic functional network partition on the
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structural connectome yields better performance, imply-
ing that these networks are indeed functionally meaning-
ful [15, 49]. As one salient example we find that, at criti-
cality, the limbic network consistently presents the great-
est memory capacity, and the greatest difference between
encoding and decoding, suggesting that the contribution
of this network to memory function naturally arises from
its embedding in the macroscale anatomical architecture
of the brain [11, 97, 98, 116, 160]. We also observe that
the interaction between topology and dynamics shapes
how information accumulates in the network. Interest-
ingly, the direction in which information accumulates in
non-critical regimes mirrors the characteristic ordering
of functional systems along the unimodal-transmodal hi-
erarchy [58, 84, 92, 93], suggesting a possible mecha-
nism to flexibly switch between bottom-up and top-down
information flow.

The present paradigm can be extended to investigate
a wider range of cortical functions to further our under-
standing on how functional specialization emerges from
network structure. By training brain-isnpired network
architectures to implement other types of tasks, we can
probe other modes or classes of computation. For exam-
ple, temporal-sequence learning tasks, mimicking speech
recognition, depend on the network’s ability to occupy
multiple states and match these states to the signal in-
puts, thus accessing a different computational property.
We thus envision future efforts to link architecture and
computation in brain networks, analogous to modern
meta-analytic methods that map regional activation to
cognitive tasks [39, 42, 104, 162]. Mapping network
structure and dynamics to fundamental blocks of compu-
tation may allow us to build a comprehensive structural-
functional ontology, relating network structure to com-
putational properties and, ultimately, to cognitive func-
tion.

We finally note that the present results should be in-
terpreted with respect to several limitations. First, to
focus on the question of how network structure influ-
ences learning, we implemented a model with simple,
homogeneous dynamics across the entire network. Fu-
ture work should explore the role of heterogeneous dy-
namics [36, 155]. Second, the present dynamics do not
depend on time-delayed transmission, allowing us to fo-
cus only on network structure, but ignoring the role of
network geometry in learning [132]. Third, we used
computational tractometry to reconstruct connectomes
from diffusion weighted imaging, a technique prone to
false positives and negatives [33, 83, 140]. Although
we implemented steps to focus on highly-reproducible
consensus features of these networks, future experiments
could be designed around networks reconstructed using
invasive methods with greater fidelity, such as tract trac-
ing.

Despite common roots, modern neuroscience and arti-
ficial intelligence have followed diverging paths. Tech-
nological, analytic and theoretical advances present a
unique opportunity for convergence of these two vibrant

scientific disciplines. Here, we conceptually bridge neu-
roscience and artificial intelligence by training brain net-
works to learn a cognitive task. From the connectomics
perspective, this work opens fundamentally new oppor-
tunities to discover how cognitive capacity emerges from
the links and interactions between brain areas. From the
artificial intelligence perspective, reverse-engineering bi-
ological brain networks may ultimately generate insights
and novel design principles for re-engineering artificial
brain-inspired networks and systems.

METHODS

Data acquisition

A total of N = 66 healthy young adults (16 females,
25.3 ± 4.9 years old) were scanned at the Department
of Radiology, University Hospital Center and Univer-
sity of Lausanne. The scans were performed in 3-Tesla
MRI scanner (Trio, Siemens Medical, Germany) using
a 32-channel head-coil. The protocol included (1) a
magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence sensitive to white/gray matter con-
trast (1 mm in-plane resolution, 1.2 mm slice thick-
ness), (2) a diffusion spectrum imaging (DSI) sequence
(128 diffusion-weighted volumes and a single b0 vol-
ume, maximum b-value 8000 s/mm

2, 2.2× 2.2× 3.0 mm
voxel size), and (3) a gradient echo EPI sequence sensi-
tive to BOLD contrast (3.3 mm in-plane resolution and
slice thickness with a 0.3 mm gap, TR 1920 ms, result-
ing in 280 images per participant). Participants were not
subject to any overt task demands during the fMRI scan.

Structural network reconstruction

Grey matter was parcellated into 68 cortical plus 15
subcortical nodes according to the Desikan-Killiany at-
las [37]. Cortical regions were then further divided into
1000 approximately equally-sized nodes [26]. Structural
connectivity was estimated for individual participants us-
ing deterministic streamline tractography. The procedure
was implemented in the Connectome Mapping Toolkit
[31], initiating 32 streamline propagations per diffusion
direction for each white matter voxel. Structural connec-
tivity between pairs of regions was defined as the number
of streamlines normalized by the mean length of stream-
lines and mean surface area of the two regions, termed
fiber density [48]. This normalization compensates for
the bias toward longer fibers during streamline recon-
struction, as well as differences in region size.

To mitigate concerns about inconsistencies in recon-
struction of individual participant connectomes [63,
140], as well as the sensitive dependence of network
measures on false positives and false negatives [163], we
adopted a group-consensus approach [19, 33, 110]. In
constructing a consensus adjacency matrix, we sought to
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preserve (a) the density and (b) the edge length distribu-
tion of the individual participants matrices [17, 19, 95].
We first collated the extant edges in the individual par-
ticipant matrices and binned them according to length.
The number of bins was determined heuristically, as the
square root of the mean binary density across partici-
pants. The most frequently occurring edges were then
selected for each bin. If the mean number of edges across
participants in a particular bin is equal to k, we selected
the k edges of that length that occur most frequently
across participants. To ensure that inter-hemispheric
edges are not under-represented, we carried out this pro-
cedure separately for inter- and intra-hemispheric edges.
The binary density for the final whole-brain matrix was
2.5% on average. The weight associated with each edge
was then computed as the mean weight across all partic-
ipants.

Reservoir computing

We used reservoir computing to measure the encoding
capacity of large-scale brain networks in a memory task.
In its simplest form, the reservoir computing architecture
consists of an input layer, followed by a recurrent neural
network (the reservoir), and a readout module, which is
typically a linear model. Given an input and a target sig-
nal, a learning task consists of approximating the target
signal through a linear combination of the states of the
readout nodes within the reservoir. The latter are ac-
tivated by the propagation of the external input signal,
introduced to the reservoir through a set of input nodes.
Fig. 1a illustrates the paradigm.

Briefly, reservoir computing relies on the two follow-
ing mechanistic principles: i) the complex interactions
within the reservoir perform a nonlinear projection of the
input into a higher dimensional space; this has the poten-
tial to convert nonlinearly separable problems into lin-
early separable ones; and ii) the recurrent nature of the
connections within the reservoir endows the network’s
states with a temporal memory. These two properties,
which also depend on the dynamics of the reservoir, are
critical as they constitute some of the basic computa-
tional building blocks of more complex tasks. Therefore,
if these two properties exist, the reservoir has the poten-
tial to serve as a universal function approximator [82].

In the present report, we used a high-resolution hu-
man brain connectome reconstructed from diffusion-
weighted imaging to constrain the connections within
the reservoir. Throughout all experiments, we used all
subcortical regions as input nodes, and a subset of corti-
cal regions as readout nodes that were defined based on
the Yeo-Krienen intrinsic network partition [141]. De-
tails about network dynamics, training of the network,
and the memory task are described below.

Reservoir dynamics

The reservoir consists of an artificial recurrent neural
network of nonlinear threshold units. Each unit receives
one or more inputs and sums them to produce an output.
Each input is separately weighted, and the sum is passed
through a nonlinear activation function. The dynamics of
the reservoir are thus governed by the following discrete-
time, firing-rate neuron model:

x(t+ 1) = tanh(Winu(t+ 1) +Wx(t)) (1)

where x(t) represents the vector of activation states of
the nodes inside the reservoir (reservoir states). The vec-
tor u(t) = (u1(t), , uK(t)) is aK-dimensional input signal
weighted by the input matrix Win (usually a constant,
unless stated otherwise). Finally, the matrix W repre-
sents the connection weights within the reservoir, i.e.,
the brain connectivity measures obtained from diffusion
MRI data.

Stability of reservoir dynamics

We parametrically tuned the dynamics of the reservoir
by uniformly scaling the connection weights so that the
spectral radius (that is, the modulus of the leading eigen-
value) of the connectivity matrix is either below, at, or
greater than 1 [118]. Specifically, we first scaled the
weights of the connectivity matrix between 0 and 1, and
then we divided by its spectral radius. The latter oper-
ation transforms the spectral radius of the connectivity
matrix to 1. To gradually modified the spectral radius,
we multiplied the connectivity matrix by a wide range of
α values ([0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3,
1.4, 1.5, 2.0, 2.5, 3.0, 3.5]), being α the tuning pa-
rameter. The matrix W in Eqn. 1 can then be expressed
as:

W = α
W0

ρ(W0)
(2)

where W0 is the original weighted connectivity matrix
scaled between 0 and 1 and ρ(W0) is the spectral radius
of W0. Reservoir dynamics are stable for α < 1, and
chaotic for α > 1. When α ≈ 1, dynamics are said to be
critical, or at the edge of chaos, a transition point between
stable and chaotic dynamics [118].

Readout module

The role of the readout module is to approximate the
target signal y(t), specific to the task at hand, through a
linear combination of the activation states of the output
nodes within the reservoir, xout(t). That is:
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ŷ(t) = f(Woutxout(t)) (3)

where Wout is the matrix of weights that connect the
readout nodes to the readout module. Using the tar-
get signal y(t), these weights are trained in a supervised
manner. In principle, learning can be attained using any
type of linear regression model. Here, f represents the
ordinary least squares estimator.

Intrinsic networks as functional systems

The theoretical paradigm here proposed (Fig. 1a)
makes part of a more extensive effort to develop a
framework to investigate structure-function relation-
ships across the brain (function understood from a com-
putational point of view). Specifically, this framework
aims to further our understanding on how functional spe-
cialization emerges from the underlying network struc-
ture. To investigate the effects of network structure on
the emergence of the spectrum of cortical functions, we
need a convenient and biologically meaningful way to
divide the cortex into its functional systems. Here we
used a connectivity-based functional partition known as
intrinsic networks.

Intrinsic networks, often known as resting-state net-
works in the cognitive neuroscience literature, consist
of brain regions that exhibit high levels of synchro-
nized BOLD activity [159]. It has been hypothesized
that the organization of the brain into these segregated
systems or modules supports functional specialization
[159]. These internally coherent and co-fluctuating net-
works are associated with individual differences in task
activation and behaviour, including perception, cogni-
tion and action [29, 89]. In the present study, we
applied the intrinsic network partition derived by Yeo,
Krienen and colleagues [141]. Briefly, the partition was
obtained by applying a clustering algorithm to voxel-
level functional connectivity estimated from resting-state
functional MRI data. These networks have been consis-
tently replicated in multiple studies using different data
acquisitions, anatomical parcellations and analysis tech-
niques [32].

Memory task

Using the experimental paradigm described above, we
estimated the encoding capacity of each intrinsic net-
work in a memory task. In this task, the readout module
is trained to reproduce a time-delayed random input sig-
nal at various lags. In other words, y(t) = u(t−τ), where
y(t) is the target signal, u(t) is the input signal, and τ is
the parameter that controls for the amount of memory
required by the task.

We generated 4100 points of a uniformly distributed
input signal (u(t) ∼ Uniform(−1, 1)). We introduced this

signal to the reservoir through a set of input nodes corre-
sponding to all 15 subcortical regions. We then recorded,
for the same length of time, the activation states of the
readout nodes (these activation states are represented
by Xout in Eqn. 3). We used 2050 time points of the
recorded activation states to train a linear regression
model to reproduce the same input signal at different
time lags (see Readout module for details); τ was mono-
tonically increased in one-size steps in the range [1, 16].
The remaining 2050 time points were used to test the
performance. For every τ , a performance score was com-
puted as the absolute value of the Pearson correlation
between the target y(t) and the predicted signal ŷ(t).
Memory capacity (MC) was then estimated as the sum of
the performance score across all time delays:

MC =
∑
τ

|ρ(y, ŷ)| (4)

The magnitude of MC is proportional to the ability of
the reservoir’s activation states to encode both past and
present input stimuli.

The procedure above was repeated for every value of
the parameter α (see Stability of reservoir dynamics for
details), and for every intrinsic network. In this way, the
net result is a memory capacity per intrinsic network as
a function of the α.

Bootstrap resampling

We bootstrapped individual connectivity matrices to
provide a reliable estimate for the memory capacity of
each intrinsic network. Specifically, we generated 1000
(sub)samples by randomly selecting, without replace-
ment, 40 out of 66 individual connectivity matrices.
For each drawn subset, we generated a group-consensus
structural connectivity matrix (see Structural network re-
construction for details), and we applied the procedure
described in the previous section. In this way, we con-
structed a distribution for the memory capacity of each
functional system at every value of the parameter α
(Fig. 1c).

Null models

We benchmarked the memory capacity of intrinsic net-
works against two different types of null models. The
first null model evaluates the extent to which mem-
ory capacity measures depend on the underlying net-
work connectivity. To do so, we used the method
proposed in [86], available in the Python version of
the Brain Connectivity Toolbox (https://github.com/
aestrivex/bctpy; [112]). This method systematically
destroys network topology by randomly swapping pairs
of edges (10 swaps per edge), while preserving net-
work size, degree distribution, density, and node-level,

https://github.com/aestrivex/bctpy
https://github.com/aestrivex/bctpy
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intrinsic-network assignment (Fig. 2b). This method
guarantees the connectedness of the resulting rewired
network, that is, every node can be reached by every
other node in the network.

The second null model assesses whether the parti-
tion of the connectome into seven intrinsic networks
is relevant for the performance in the memory task.
We used a spatially-constrained, label-permutation null
model that randomly permutes intrinsic network labels
while preserving their spatial embedding and autocorre-
lation (Fig. 2c; [1, 85]). This method creates a surface-
based representation of our parcellations by applying the
Lausanne atlas to the FreeSurfer fsaverage surface us-
ing files obtained from the Connectome Mapper toolkit
(https://github.com/LTS5/cmp) [31]. The fsaverage
surface is then projected onto a sphere to define spatial
coordinates for each parcel; vertices on the sphere are
assigned based on the closest distance to the center-of-
mass of each parcel. New spatial coordinates are gen-
erated by applying randomly-sampled rotations. Finally,
node-labels are then reassigned based on that of the clos-
est resulting parcel. Importantly, this procedure was per-
formed at the parcel resolution rather than the vertex
resolution to ensure that parcel sizes were not changed
during the rotation and reassignment procedure. This
method is available in the module stats of the Net-
neurotools python package (https://netneurotools.
readthedocs.io/en/latest/index.html).

These models were applied on a consensus structural
connectivity matrix reconstructed from the individual
matrices of all 66 subjects. A null distribution with
1000 iterations was built for each model. We used
the Wilcoxon-Mann-Whitney two-sample rank-sum test
to assess the statistical significance of the human connec-
tome’s memory capacity estimates against the null mod-
els.

Wiring cost

Euclidean distance was used as a proxy for white mat-
ter tract length. We estimated the distance between ev-
ery pair of brain regions that are physically connected by
a structural connection. The total wiring cost for the net-
work was then estimated as the sum of the connection
lengths weighted by the connectivity values; the latter
are proportional to the number of streamlines between
brain regions. Same conclusions can be drawn when the
mean or median of the connection length distribution are
used instead (not shown in the present report).

Encoding and decoding capacity

Broadly speaking, any communication scheme is char-
acterized by the presence of two agents: the encoder,
whose role is to encode and send a message, and the
decoder, who is in charge of receiving and decoding the

message. In such scheme, the capacity of the encoder
agent to cipher – or encode – the message is bound to
the information it sends, and the capacity of the decoder
agent to decipher – or decode – the message is bound
to the information it receives. Following a similar logic,
we operationalized the encoding and decoding capacity
of an intrinsic network as the memory capacity of the in-
formation sent and received by the network, respectively.
This translates into two different experimental set ups,
namely encoding and decoding, which conceptually di-
verge in the role played by the network (i.e., encoder
or decoder), and pragmatically differ in the way read-
out nodes are selected. For encoding, the signals gener-
ated by the nodes of the network are used as a proxy
for the information sent by the network. For decoding,
the signals generated by the directly connected neigh-
bour nodes of the network are used as a proxy for the
information received by the network.

Encoding - decoding: interpretation

To quantify how temporal information content is trans-
formed as it flows through a particular functional net-
work, we considered the difference between its encoding
and decoding capacity (encoding−decoding). A large dif-
ference between encoding and decoding indicates that
the memory content of the information traveling from
the rest of the brain to an intrinsic network has under-
gone a significant transformation. If the difference be-
tween encoding and decoding is positive (encoding >
decoding; good encoder), this suggests that the interac-
tion between intrinsic network connectivity and dynam-
ics enhances the memory content of the signal within
the network to perform the task at hand. Conversely,
a negative difference between encoding and decoding
(encoding < decoding; good decoder) suggests that the
interaction between extrinsic network connectivity and
dynamics rather favours the memory content of the sig-
nals coming to the network. Summing up, the magni-
tude of the difference between the encoding and decod-
ing capacity of a network is proportional to the mem-
ory content gained or lost by the signal as information
propagates through the network. The sign of the dif-
ference tells us the direction in which this transforma-
tion occurred, in other words, whether the signal gained
(positive) or lost (negative) temporal content as it trav-
els from the rest of the brain to a particular functional
network.

Methodological details

The selection of the readout nodes in the experi-
mental set up is what ultimately determines the coding
paradigm. In the encoding set up, readout nodes corre-
spond to the nodes within the network, whereas in the
decoding setup, readout nodes correspond to the direct

https://github.com/LTS5/cmp
https://netneurotools.readthedocs.io/en/latest/index.html
https://netneurotools.readthedocs.io/en/latest/index.html
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neighbours of the network. In the latter case, because
the number of neighbour regions (i.e., directly connected
nodes that do not belong to the network) is in all cases
higher than the amount of regions within each intrinsic
network, these differences should be accounted for when
estimating their encoding and decoding capabilities. To
do so, we first derived the between-network connectivity
profile of every node in the network under examination.
Based on these node-level connectivity profiles, we esti-
mated the proportion of connections from every other
network (within-network connections were excluded).
Next, we randomly draw as many neighbour regions as
nodes within the network in such a way that the propor-
tions previously estimated were preserved. The selected
nodes were then used as output nodes in the decoding
experimental set up. To avoid biases towards a particu-
lar set of output nodes, the same process was repeated
100 times to get a better estimate of the decoding capac-
ity of every intrinsic network.

It is important to note, however, that the metric here
proposed, i.e., the difference between encoding and de-
coding capacity, assumes that signals propagate in a par-
ticular direction. Because MRI-based structural networks
do not contain information about the directionality of
anatomical projections [70, 90], our network model is
undirected and thus considers that information travels
bidirectionally. Therefore, interpretation of the results
should be done with respect to this limitation.

Graph network properties

We explored the effects of the interaction between
network topology and dynamics on the memory capac-
ity of intrinsic networks. To do so, we correlated lo-
cal and global network topological attributes with the
memory capacity of the brain’s intrinsic networks. Lo-
cal topological attributes included: (1) node strength,
(2) clustering coefficient, (3) node-betweenness central-
ity and (4) participation coefficient. These local fea-
tures were first estimated at the node level using the
weighted adjacency matrix, and then averaged within
each intrinsic network. Global topological features in-
cluded: (1) characteristic path length, (2) transitivity
and (3) modularity. Global features were estimated at
the network level, and then correlated with the average
memory capacity across intrinsic networks. To calculate
all graph topological metrics we used a Python version of
the Brain Connectivity Toolbox (https://github.com/
aestrivex/bctpy; [112]) Definitions of these topologi-
cal metrics can be found below.

• Node strength: in undirected networks, node strength
is defined as the sum of the weights of the connections
that go from a node to every other node in the net-
work.

• Clustering coefficient: the local clustering of a node
is the proportion of connections between the nodes

within its neighbourhood divided by the total number
of possible connections between them [100].

• Node betweenness centrality: the betweenness central-
ity of a node is the fraction of all shortest paths in the
network that contain the node. Nodes with a high
value of betweeness centrality participate in a large
number of shortest paths [21].

• Participation coefficient: the participation coefficient is
a measure of the distribution of a node’s connections
among the communities of the network. If the par-
ticipation coefficient is 0, the connections of a node
are entirely restricted to its community. The closer
the participation coefficient is to 1, the more evenly
distributed are the connections of the node among all
communities [46]. Mathematically, the participation
coefficient P of node i is given by:

Pi = 1−
C∑
c=1

(
Sis
Si

)2

(5)

where Sis corresponds to the sum of the weights of the
connections from node i to nodes in community c, Si
is the strength of node i, and C is the total number of
communities. This measure requires a previously es-
tablished community structure as input. Here, we esti-
mated the participation coefficient of individual brain
regions using the proposed intrinsic-network partition.

• Characteristic path length: the characteristic path
length is a measure of efficiency and is defined as the
average shortest path length of the network. The dis-
tance matrix on which shortest paths are computed
must be a connection-length matrix, typically obtained
via a mapping from weight to length. Here we used
the inverse of the connection-weight matrix as the dis-
tance matrix. In this way, strong (weak) connections
are naturally interpreted as shorter (longer) distances
[38, 158].

• Transitivity: a network’s transitivity is the ratio of tri-
angles to triplets (open and closed) in the network.
A triplet consists of three nodes that are connected by
either two (open) or three (closed) undirected connec-
tions [100, 112, 158].

• Modularity: is a measure that relates the number of
within-network connections to all connections in the
network; it quantifies the strength of segregation into
distinct networks. The higher the modularity, the
stronger is the segregation/separation between mod-
ules [44, 76, 107]. Mathematically, the modularity Q
of a network can be expressed as:

Q =

m∑
i=1

(eii − a2i ) (6)

https://github.com/aestrivex/bctpy
https://github.com/aestrivex/bctpy
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where eii is the fraction of all connections that link two
nodes within module i, ai is the fraction of connections
that connect a node in module i to any other node, and
m is the total number of modules. As with the partic-
ipation coefficient, this measure requires a previously
established community structure as input. We used the
intrinsic-network partition for this purpose.

Code availability

The Python repository used for the simulations of
the reservoir and the implementation of the memory
capacity task, as well as for the generation of the
null network models is available on GitHub (https:
//github.com/estefanysuarez) and is built on top of
the following open-source Python packages: Numpy
[51, 99, 154], Scipy [153], Pandas [88], Scikit-
learn [102], Bctpy (https://github.com/aestrivex/
bctpy) [112], NetworkX [47], Netneurotools https:
//netneurotools.readthedocs.io/en/latest/, Mat-

plotlib [59], and Seaborn [157].
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Figure S1. A chaotic state closer to critical dynamics | Results in the chaotic regime were replicated for alpha values in the
range α = [1.1, 1.2, 1.3, 1.4, 1.5]. (a) Memory capacity of intrinsic networks compared to the rewired and label-permutation
models. (b) Between network comparison of memory capacity estimates after the removal (through linear regression) of relative
connection density effects. (c) Encoding vs decoding capacity of intrinsic networks. Encoding and decoding capacity values were
scaled between 0 and 1 according to the maximum and minimum values in the chaotic regime. (d) Information transfer of intrinsic
networks. Relationship between memory capacity and (e) local and (f) global network properties.
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Figure S2. Effects of relative density on the memory capacity of intrinsic networks | The relative density of an intrinsic
network is defined as the ration of the number of internal connections to the total number of possible connections within the
intrinsic network. (a) The left column shows the relationship between memory capacity and relative density across dynamical
regimes (markers represent the mean values across bootstrapped consensus matrices and error bars correspond to their standard
deviation). The right column shows the distribution (across bootstrapped consensus matrices) of the Pearson’s correlation between
the memory capacity of intrinsic networks and their relative density. (b) Memory capacity of intrinsic networks before (left column)
and after (right column) removing the effects of relative density. Given the high average values of the Pearson’s correlation between
memory capacity and relative density, relative density effects were regressed out using a linear model.
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Figure S3. Memory capacity of the brain - replication using a more biologically-plausible set of input nodes | Analyses were
replicated considering thalamic subcortical regions as input nodes. (a) Distribution (across bootstrapped consensus matrices) of
the memory capacity of the human connectome (magenta) as a function of the dynamics. Similar to the experimental set up where
all subcortical regions are used as input nodes (Fig.2), the estimated memory capacity of the human connectome is maximum and
optimal at the edge of chaos (α = 1). (b) Distribution of the memory capacity of the empirical network (magenta; median = 0.94)
vs. the rewired network model (cyan; median = 0.90, Prewired = 0.0 and effect size = 99% two-tailed, Wilcoxon-Mann-Whitney
two-sample rank-sum test) at the critical state. (c) Distribution of the memory capacity of the empirical network (magenta) vs.
the label-permutation model (yellow; median = 0.92, Pspin = 0.0 and effect size = 99% two-tailed, Wilcoxon-Mann-Whitney
two-sample rank-sum test) at the critical state.



26

Figure S4. Memory capacity of intrinsic networks - replication using a more biologically-plausible set of input nodes |
Analyses were replicated considering thalamic subcortical regions as input nodes. (a) Memory capacity of intrinsic networks across
dynamical regimes. At the critical state, memory capacity estimates on the empirical network are consistently and significantly
higher and optimal across functional systems, compared to the rewired and spatially-constrained null models. (b) Comparison
across intrinsic networks, after linearly regressing out the effect of relative connection density on memory capacity estimates.
When compared to each other, memory capacity is in general quite homogeneous across functional systems in the critical regime,
except for the limbic system, for which memory capacity is the highest, maybe reflecting an anatomically-mediated predisposition
for memory encoding. In the stable and chaotic regimes, on the other hand, the axis along which memory capacity estimates
fluctuate broadly resembles the unimodal-transmodal hierarchy, differentiating again somatosensory from higher-order association
areas.
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Figure S5. Memory capacity of the brain - replication at a lower scale | Analyses were replicated using a lower resolution
parcellation with 448 cortical and 15 subcortical regions. (a) Distribution (across bootstrapped consensus matrices) of the memory
capacity of the human connectome (magenta) as a function of the dynamics. Similar to the high-resolution network, the estimated
memory capacity of the human connectome is maximum and optimal at the edge of chaos (α = 1). (b) Distribution of the
memory capacity of the empirical network (magenta; median = 0.89) vs. the rewired network model (cyan; median = 0.80,
Prewired = 10−4 and effect size = 95% two-tailed, Wilcoxon-Mann-Whitney two-sample rank-sum test) at the critical state. (c)
Distribution of the memory capacity of the empirical network (magenta) vs. the label-permutation model (yellow; median = 0.88,
Pspin = 10−4 and effect size = 75% two-tailed, Wilcoxon-Mann-Whitney two-sample rank-sum test) at the critical state.
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Figure S6. Memory capacity of intrinsic networks - replication at a lower scale | Analyses were replicated using a lower
resolution parcellation (448 cortical and 15 subcortical regions). (a) Memory capacity of intrinsic networks across dynamical
regimes. In contrast to the high resolution network, at the critical state, memory capacity estimates on the empirical network
are significantly different but not consistently higher across all functional systems, compared to the rewired and the spatially-
constrained label permutation models. (b) Comparison across intrinsic networks, after linearly regressing out the effect of relative
connection density on memory capacity estimates. At the critical state, contrary to what occurs in the high resolution network (in
which there are small differences in memory capacity across functional systems), there is a higher differentiation across intrinsic
networks’ memory capacity, and a more prominent difference between lower somatosensory and higher association areas. The
same type of differentiation is present in the stable and chaotic regimes, but in opposing directions with respect to each other. In
the stable regime, memory capacity estimates follow the same trend observed in the critical state, in which somatosensory areas
are on average lower compared to higher association areas. The opposite is observed in the chaotic regime: lower somatosensory
areas present on average higher memory capacity compared to higher association areas.
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