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Automated monitoring of dark web (DW) platforms on a large scale is the first step toward developing
proactive Cyber Threat Intelligence (CTI). While there are efficient methods for collecting data from the
surface web, large-scale dark web data collection is often hindered by anti-crawling measures. In particular,
text-based CAPTCHA serves as the most prevalent and prohibiting type of these measures in the dark web.
Text-based CAPTCHA identifies and blocks automated crawlers by forcing the user to enter a combination of
hard-to-recognize alphanumeric characters. In the dark web, CAPTCHA images are meticulously designed
with additional background noise and variable character length to prevent automated CAPTCHA breaking.
Existing automated CAPTCHA breaking methods have difficulties in overcoming these dark web challenges. As
such, solving dark web text-based CAPTCHA has been relying heavily on human involvement, which is labor-
intensive and time-consuming. In this study, we propose a novel framework for automated breaking of dark
web CAPTCHA to facilitate dark web data collection. This framework encompasses a novel generative method
to recognize dark web text-based CAPTCHAwith noisy background and variable character length. To eliminate
the need for human involvement, the proposed framework utilizes Generative Adversarial Network (GAN) to
counteract dark web background noise and leverages an enhanced character segmentation algorithm to handle
CAPTCHA images with variable character length. Our proposed framework, DW-GAN, was systematically
evaluated on multiple dark web CAPTCHA testbeds. DW-GAN significantly outperformed the state-of-the-art
benchmark methods on all datasets, achieving over 94.4% success rate on a carefully collected real-world
dark web dataset. We further conducted a case study on an emergent Dark Net Marketplace (DNM) to
demonstrate that DW-GAN eliminated human involvement by automatically solving CAPTCHA challenges
with no more than 3 attempts. Our research enables the CTI community to develop advanced, large-scale dark
web monitoring. We make DW-GAN code available to the community as an open-source tool in GitHub.
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1 INTRODUCTION
Illicit platforms have become increasingly common on the dark web [2]. Examples include Dark
Net Markets (DNMs) and carding shops enabling hackers to exchange stolen data, hacking tools,
and other illegal products. These malicious products could be detrimental to cyber defense and
cause significant loss and damage on cyber infrastructure. To address this issue, proactive Cyber
Threat Intelligence (CTI) aims at monitoring the dark web to inform cybersecurity decision making
[6, 8, 9, 19, 28, 33]. For instance, cybersecurity firms such as FireEye identify threats to customer
assets from the dark web [14, 18]. Also, with the prevalence of financial data breaches in carding
shops and DNMs, monitoring the dark web helps financial institutions alert their customers for
potential risks [31]. While developing proactive CTI necessitates automated web crawling for
dark web data collection, the dark web extensively employs anti-crawling measures to prevent
automated data collection. Text-based CAPTCHA is often known as the most common and difficult
anti-crawling measure to counteract in the dark web [5, 34]. CAPTCHA stands for Completely
Automated Public Turing Test to tell Computers and Human Apart. Text-based CAPTCHA identifies
and blocks web crawlers by presenting a heavily obfuscated image of characters and testing the
user’s ability to identify the characters shown in the CAPTCHA image. The obfuscation generally
involves distorting characters in terms of their font, color, and rotation.
Text-based CAPTCHA can significantly hamper the automation of large-scale dark web collec-

tion. When navigating through dark web platforms, crawlers are frequently disrupted by text-based
CAPTCHA challenges, which then requires human involvement and is thus detrimental to auto-
mated large-scale dark web collection. While recent machine learning (ML) methods have been
developed and shown promising results in automated CAPTCHA breaking [10–12, 15, 37], dark
web platforms increase the difficulty of algorithmic CAPTCHA breaking. Text-based CAPTCHA
images in the dark web are different from those on regular platforms in two ways. First, CAPTCHA
backgrounds are made particularly noisy by adding distracting background consisting of colorful
curves and dots. Such noisy backgrounds are challenging for ML-based methods because they need
to learn and distinguish a large number of background patterns, in addition to recognizing the
characters. Second, while the character length of text-based CAPTCHA images is a key configura-
tion parameter for training ML-based CAPTCHA breaking methods, dark web platforms rarely use
CAPTCHA images with a fixed character length. Pre-trained ML methods often have difficulty in
breaking CAPTCHA images with different lengths from what they are trained on. In addition to
these challenges, there is a lack of human-labeled dark web-specific text-based CAPTCHA datasets
for training ML-based CAPTCHA breaking methods. As such, existing CAPTCHA breaking meth-
ods often face trouble with effectively facilitating the automated collection of dark web content for
CTI.

Motivated by these challenges, our study contributes to the cybersecurity literature by proposing
a novel CAPTCHA breaking framework that leverages the state-of-the-art deep learning techniques
for breaking dark web CAPTCHA. The proposed framework, named DW-GAN, comprises three
sequential components. First, the automated background removal component seeks to remove the
dark web noisy background to improve CAPTCHA breaking performance. To this end, we propose a
Generative Adversarial Network (GAN) model, CAPTCHA GAN, that learns to generate CAPTCHA
images with relatively clean background from the original patterns with noisy backgrounds. Instead
of using millions of labeled CAPTCHA images for training, our CAPTCHA GAN can generate
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training data to address the lack of labeled training data. Second, the character segmentation
component addresses the challenge of variable character length by extracting image segments,
each of which contains one single character. Additionally, we extend the core image segmentation
technique with a region enlargement procedure for achieving better segmentation. Lastly, the
character recognition component detects the character in each CAPTCHA image segment. We
utilize the state-of-the-art Convolutional Neural Network (CNN) to recognize segmented characters.
Our proposed framework was rigorously evaluated on a research testbed comprising various

CAPTCHA images from the dark web. Our evaluation experiments show that the proposed frame-
work consistently outperformed the state-of-the-art baseline CAPTCHA-breaking methods. In
particular, our ablation analysis show that our method was able to effectively remove the colorful
curves and dots in the background. Moreover, our proposed CAPTCHA segmentation was able to
further improve the success rate of breaking CAPTCHA with variable character length over the
state-of-the-art baseline techniques. We demonstrate the applicability of our proposed framework
through a case study on dark web data collection, where we incorporated our framework into a
dark web crawler. Equipped with DW-GAN, the crawler successfully collected a medium-sized
Dark Net Marketplace within almost 5 hours without any human involvement, where DW-GAN
was able to break CAPTCHA images with no more than three attempts.

The remainder of the paper is organized as follows. Section 2 presents a review of related literature
to motivate our research and provide a technical background of CAPTCH-breaking. Section 3
details our proposed design of the DW-GAN framework. Section 4 systematically examines the
effectiveness of our proposed framework and its major novelties in comparison with the state-of-
the-art benchmark techniques. Section 5 demonstrates the applicability of our proposed framework
through a case study on dark web collection. Lastly, Section 6 summarizes our contribution and
discusses our future directions.

2 LITERATURE REVIEW
Based on our research objectives, we review two major areas of research. First, we examine dark
web data collection for proactive CTI as the major application domain of our study and investigate
CAPTCHA as a major challenge hampering dark web data collection. Second, we review the
state-of-the-art text-based CAPTCHA breaking methods in prior research. In particular, we explore
image preprocessing and background denoising techniques as necessary steps for breaking the dark
web CAPTCHA with complex backgrounds. Subsequently, we examine character segmentation as
a vital step to breaking CAPTCHA with variable character length. Lastly, we investigate character
recognition techniques for distinguishing segmented CAPTCHA characters.

2.1 Dark Web Data Collection for CTI
Cyber attacks are projected to cost the global economy $6 trillion by 2021 [20]. The mitigation
of cyber attacks increasingly relies on gathering hacker intelligence from the dark web [2] to
proactively gain reconnaissance on emerging cyber threats and key threat actors [7]. The dark web
features a conglomerate of covert illegal platforms, including shops selling stolen credit/debit card
and dark net marketplaces facilitating transactions between cybercriminals. Accordingly, dark web
data collection has been considered as a key step in developing proactive CTI [4, 26].

Automated data collection from the dark web is crucial to proactively responding to cyber threats
and data breach incidents. However, the automation of dark web data collection is complicated
by anti-crawling measures widely adopted in the dark web [27]. These measures include user
authentication, session timeout, deployment of cookies, and CAPTCHA. While most of these
measures can be effectively circumvented through implementing automated counter measures
in a crawler program, CAPTCHA is the most hampering anti-crawling measure in the dark web
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that cannot be easily circumvented due to high cognitive capabilities that are often not possessed
by automation tools [5, 38]. There are four major types of CAPTCHA: text-based, image-based,
video-based, and audio-based. Text-Based CAPTCHA requires subjects to recognize the characters
shown in a deliberately obfuscated alphanumeric pattern. Image-based CAPTCHA asks subjects to
perform certain actions (e.g., drag and drop) on a specific portion of a given image. Video-based
CAPTCHA challenges subjects to choose an option that best describes the content of a given
video. Finally, audio-based CAPTCHA plays an audio and requires users to enter the characters
mentioned in the audio. Text-based CAPTCHA is the most prevalent type among various types of
CAPTCHA in the dark web, and is the focus of our research [35]. We note that despite the ubiquity
of traditional text-based CAPTCHA in online space, dark web CAPTCHA patterns are uniquely
positioned due to the use of more complicated background noise. Accordingly, while this study is
mainly focused on dark-web CAPTCHA as a more challenging problem, the proposed method in
this study is expected to be applicable to other types of CAPTCHA without loss of generality.

2.2 Text-based CAPTCHA Breaking Methods
Automated breaking of text-based CAPTCHA is non-trivial due to two main challenges: complex
security measures and variable character length. The former involves intentionally obfuscating
patterns added to the CAPTCHA image for complicating the recognition task [3]. The latter draws
upon the fact that most automated methods trained to break CAPTCHA with a specific length are
poorly generalizable to CAPTCHAs with different character length [37]. There are two categories
of security measures: foreground security measures and background security measures. Foreground
security measures are mainly employed to prevent characters from having a uniform appearance.
These measures include font change (i.e., varying the typeface of the character to non-standard
unseen fonts), character rotation (i.e., varying the angular position of each character), and color
change (i.e., varying the foreground color of each character). Background security measures provide
additional obfuscation to the background of the CAPTCHA image by introducing dot noise (i.e.,
dot-shaped noise applied to the background surface while interfering with the characters), curve
noise (i.e., irregular curvatures that cross characters), and color change (i.e., varying the color of
noise so that it is not simply removable by elimination of a specific color). Figure 1 illustrates
examples of background and foreground security measures.

Fig. 1. Examples of CAPTCHA with Background and Foreground Security Measures: (a) dots+curves+font
size noise (b) curves + foreground noise

Extant CAPTCHA-breaking frameworks often employ three steps to address these security
measures [35]:

• Image Preprocessing: Performs a series of computer vision processing techniques to remove
background and foreground noise

• Character Segmentation: Separates characters in the CAPTCA image for character-level
CAPTCHA breaking (necessary to handle patterns with variable character length)

• Character Recognition: Identifies foreground characters via deep learning-based classification
architectures such as CNN.

We summarize prior CAPTCHA-breaking studies with focus on the methods employed at each of
these steps in Table 1.
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Table 2. Image processing techniques to address background security features in CAPTCHA

Method Major Goal

Targeted Background
Security Measure

Dot
Noise

Curve
Noise Color

Normalization [15] Enhance inconspicuous features
in images. ✕ ✕ ✓

Grayscale
Conversion [30]

Omit the impact of different
colors. ✕ ✕ ✓

Gaussian
Smoothing [35]

Lower the impact of dot noise on
the character edges. ✓ ✕ ✕

Dilation [29] Fix the missing parts of characters. ✕ ✕ ✕

Erosion [29] Shrink the dots’ size as much as
possible. ✓ ✕ ✕

Note: ANN: Artificial Neural Network; CNN : Convolutional Neural Network; GAN: Generative
Adversarial Network; CFS: Color Filling Segmentation; RNN: Recurrent Neural Network; RCN:
Recursive Cortical Network.

2.2.1 Image Processing and Background Denoising. Preprocessing CAPTCHA images involves
applying computer vision techniques to enhance the foreground and denoise the background.
Past studies utilize five major image preprocessing techniques for this purpose: normalization,
grayscale conversion, Gaussian smoothing, dilation, and erosion. Normalization scales pixel values
into a certain range to enhance inconspicuous features [29]. Grayscale conversion changes colored
images into grayscale to reduce the negative impact of a high variance in colors [11]. Gaussian
smoothing applies Gaussian function to remove details and reduce the impact of curves and dots
on the detection of characters’ edges [35]. Dilation enlarges shapes proportionally to help repair
the missing parts in characters [10]. Finally, erosion down-scales shapes proportionally in order
to shrink dot noises [10]. Table 2 summarizes the main strengths of each image preprocessing
technique in dealing with background noise. While these techniques help enhance foreground
characters, background denoising in complex patterns still remains a challenge [11]. As shown in
Table 2, the removal of curve noise is a difficult task that is hard to address with common image
preprocessing methods. This is mainly due to the resemblance of the curves to the foreground
characters. Accordingly, attempts to remove curves may result in unintended removal of foreground
characters. Background denoising is even more difficult for dark web CAPTCHA with complex and
noisy backgrounds.

While deep learning models have demonstrated promising results in image processing and can
potentially improve background removal, most deep learning models are required to be trained
on a large number of unseen background patterns. However, there lacks enough training data of
background patterns for training such models. This scarcity is even more severe for specific domains
such as the dark web. Recently, Ye et al. [37] have shown that Generative Adversarial Network
(GAN) can address this issue by automatically generating background patterns with eliminated
curve noise. GAN for background removal comprises two competing neural networks known
as generator and discriminator. The generator tries to generate patterns with clean background
from input CAPTCHAs. The discriminator tries to identify if the generator has fully removed
the background. Nevertheless, the approach in [37] operates at the image level, and thus is not
applicable to dark web CAPTCHA with variable length.
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Table 3. Character segmentation methods for CAPTCHA breaking

Method Major Goal Source Targeted Background Security Measure
Dot Noise Curve Noise Color

CFS
Fills hollow shapes with a

different color to differentiate
characters.

Gao et al.,
2013 [11] ✓ ✕ ✓

Interval-based
Segmentation

Split CAPTCHA images by
fixed intervals.

Tang et al.,
2018 [30] ✕ ✓ ✕

Pixel
Distribution

Crops the characters based
on the variance of the pixel

values.

Hussain et al.,
2016 [15] ✓ ✕ ✕

Contour
Detection

Identifies an area containing
one single character based on
the contour features of the

character.

Ferreira et al.,
2019 [10] ✓ ✓ ✓

Note: ANN: Artificial Neural Network; CNN : Convolutional Neural Network; GAN: Generative
Adversarial Network; CFS: Color Filling Segmentation; RNN: Recurrent Neural Network; RCN:
Recursive Cortical Network.

2.2.2 Character Segmentation to Address Variable Character Length. Despite the noisy background,
another unique challenge of dark web CAPTCHA is the variable character length. Many automated
CAPTCHA breaking solutions operate at the image level, where the CAPTCHA image is analyzed
in its entirety and the CAPTCHA breaker predicts characters in the CAPTCHA altogether. As such,
these solutions need to be trained on fixed-length CAPTCHA. The variable character length makes
such image-level CAPTCHA breakers ineffective for two major reasons. First, image-level models
that are trained on a pre-specified length are not applicable to CAPTCHAs with a different length
of characters. Second, at the image level, the number of class labels grows exponentially with the
number of characters (e.g., 103 for 3-digit and 104 for 4-digit numerical CAPTCHA). As such, a very
large number of CAPTCHA images is required for model training because each class label needs to
have a sufficient number of training CAPTCHA images [37].
In contrast, character-level CAPTCHA breakers require a much smaller number of class labels

(e.g., 10 different classes (i.e., 0,. . . , 9) for numerical patterns). In particular, character-level CAPTCHA
breakers perform character segmentation to separate characters from other characters prior to
recognition [35]. Four segmentation methods are commonly leveraged in CAPTCHA breaking
research: color filling segmentation (CFS), interval-based, pixel distribution-based, and contour
detection-based. We provide a review of these methods in Table 3. As observed in the table, the
contour detection method is more suitable for the dark web CAPTCHA since the method can
operate despite the changes in font, color, and rotation of the characters. This is mainly due to the
independence of the contours from these security measures.

2.2.3 Character Recognition. After identifying the character boundaries via segmentation, the last
step involves correctly recognizing the characters within each boundary [11]. As shown in Table 1,
among the past studies, Convolutional Neural Networks (CNNs) have been widely used for character
recognition task [3, 34]. CNNs have shown promising results in counteracting foreground security
measures such as rotation, color change, and font change of the characters. A CNN is built upon
three main components: convolution layer, sampling layer, and fully connected layer. Each CNN
component contributes to a certain aspect of CAPTCHA Character recognition. Convolution layer
extracts geometrical salient features from local regions of the input image. For CAPTCHA breaking,
this layer extracts rotation-invariant features from characters. The sampling layer combines features
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from local regions to generate more abstract features. For CAPTCHA breaking, this layer helps
identify characters despite differences in their font and sizes. The fully connected layer weights
the extracted features and assigns a probability to the output. For CAPTCHA breaking, this layer
predicts the pattern’s class label based on the extracted features. Accordingly, we expect that CNN
can effectively contribute to dark web CAPTCHA character recognition after proper character
segmentation.

2.3 Research Gaps andQuestions
Existing CAPTCHA breaking methods are not designed for addressing specific characteristics of
the dark web CAPTCHA. As such, security analysts often face trouble with effectively facilitating
the automated collection of dark web content for CTI. Specifically, two major research gaps
are identified from the review of prior studies. First, there lack studies offering methods for
breaking CAPTCHA with complex noisy backgrounds in the dark web. Second, existing methods
do not address CAPTCHA with variable character lengths and noisy backgrounds within a unified
framework. Based on these gaps, we pose the following research question: How can we design an
automated CAPTCHA breaking framework to address the noisy background and variable character
length in the dark web?

3 RESEARCH DESIGN
To address our research question, we propose Dark Web-GAN (DW-GAN), a novel GAN-based
framework that utilizes background denoising, character segmentation, and character recognition to
automatically break dark web CAPTCHA. DW-GAN was implemented using PyTorch and OpenCV
open-source libraries. DW-GAN aims to counteract background security measures and address the
challenge of variable character length for dark web CAPTCHA. Consistent with the steps described
in the literature review, DW-GAN comprises three major components shown in Figure 2.

Fig. 2. DW-GAN Framework for Breaking Dark Web-specific CAPTCHA Images (left) and Corresponding
Illustration (right)

As illustrated in the figure, first, the GAN-based background denoising component removes
the noisy background from a given dark web CAPTCHA image. Then, the denoised CAPTCHA
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is processed using Gaussian smoothing for removing the residual noise. As opposed to the GAN
approach used by Ye et al. [37] that operates at the image level, and thus is not applicable to dark
web CAPTCHA with variable length, our proposed DW-GAN is designed to recognize CAPTCHA
at the character level, which does not depend on the CAPTCHA length. Once the background is
denoised, characters are segmented using an enhanced contour detection algorithm so that the
remaining steps will not depend on the character length of the CAPTCHA image. To this end, we
enhance the core border tracing algorithm with a subsequent region enlargement procedure, which
is described later. Lastly, segments of the original CAPTCHA image are fed to a CNN for deep
learning-based character recognition. We detail each component of DW-GAN in the following
subsections.

3.1 Background Denoising
3.1.1 Background Denoising: CAPTCHA GAN. Attaining a training dataset encompassing all possi-
ble background patterns might not be practical for dark web CAPTCHA as it requires expensive
human-labeled data and excessive human involvement. As such, we propose to leverage GAN
to automatically generate CAPTCHA background patterns for training background denoising.
Specifically, the background denoising component in DW-GAN consists of two sub-components:
(1) the CAPTCHA GAN sub-component, a customized GAN architecture to automatically learn
how to remove background noise, and (2) the residual background noise removal sub-component to
further enhance the CAPTCHA foreground. CAPTCHA GAN aims to reduce various background
curve noises in CAPTCHA images automatically. This is achieved by incentivizing the CAPTCHA
GAN generator to generate background noise-free counterparts of original CAPTCHA images.
This generative feature of CAPTCHA GAN allows for training the model with only a small labeled
dataset (i.e., 500 dark web CAPTCHA images) and achieving a high performance in background
denoising. The learning process for background removal in CAPTCHA GAN includes four major
steps:

• Step 1: The generator seeks to create background noise-free CAPTCHA image 𝑥 from the
original dark web CAPTCHA image 𝑦.

• Step 2: The generated pattern and the corresponding original CAPTCHA image are fed to
the discriminator to assess whether the background noise has been completely removed.

• Step 3: The generator improves by learning via minimizing the loss function LG , a pixel-to-
pixel cross-entropy loss that compares the generator’s output and the noise-free CAPTCHA
image 𝑥 . As in the conventional GAN [13], the loss minimization is conducted via gradient
descent as part of the back propagation in the generator’s neural network parameterized
by network weights 𝜃𝑔. The generator’s loss function is given by LG = ∇𝜃𝑔

1
𝑁

∑𝑁
𝑛 [log(1 −

𝐷 (𝐺 (𝑦𝑛)))].
• Step 4: The discriminator improves bymaximizing the loss functionLD that compares the true
label (i.e., incomplete (0) vs. complete background removal (1)) and the discriminators’ output.
the loss minimization is conducted via gradient ascent as part of the back propagation in the
discriminator’s neural network parameterized by networkweights𝜃𝑑 . The discriminators’ loss
is given by LD = ∇𝜃𝑑

1
𝑁

∑𝑁
𝑛 [(log(𝐷 (𝑥𝑛))) + log(1−𝐷 (𝐺 (𝑦𝑛)))]. to make the discrimination

more accurate even on the denoised CAPTCHA image from generator’s output.

Steps 1-4 are repeated until the generator and discriminator reach the equilibrium condition,
where neither is able to improve the performance further [13]. Figure 3 depicts the abstract view of
these steps.
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Fig. 3. Abstract View of CAPTCHA GAN for Background Denoising

CAPTCHA GAN’s process in Figure 3 can be formalized as the minimax game with value
function 𝑉 in Equation 1, in which 𝐺 (𝑥𝑛) and 𝐷 (𝑥𝑛) denote the generator and discriminator
networks, respectively.

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = 1
𝑁

𝑁∑︁
𝑛

[(log(𝐷 (𝑥𝑛))) + log(1 − 𝐷 (𝐺 (𝑦𝑛)))] (1)

𝑁 denotes the number of images in the dataset and 𝑥𝑛 represents the input CAPTCHA image.
Also,𝐺 (𝑥𝑛) associates withLG and𝐷 (𝑥𝑛) corresponds to discriminator’s lossLD . CAPTCHAGAN
was implemented in Python using PyTorch deep learning library. All training and testing processes
for experiments in Section 4 were executed on a single Nvidia RTX 2070 GPU with 2,560 CUDA
cores and 8 GB internal memory. To enhance reproducibility, the model specifications of CAPTCHA
GAN, including the number of layers, neurons, and activation functions are given in Appendix A.
Also, the implementation of CAPTCHA GAN is available at https://github.com/johnnyzn/DW-GAN
as part of the DW-GAN’s source code.

3.1.2 Background Denoising: Residual Noise Removal. While GAN-based background denoising
seeks to remove all curve noise in the background, some residual noisemay still remain. This residual
noise could potentially interfere with the subsequent segmentation and character recognition.
Accordingly, we utilize a combination of three image processing techniques to further remove the
remaining background noise. Grayscale conversion is first leveraged to reduce the color variance as
a preliminary step that alleviates color noise. Then, Gaussian smoothing is employed to reduce the
visibility of the residual background noise by blurring the unnecessary details in the image. Lastly,
normalization is applied to distinguish the foreground from the background color. An example of
the results of residual noise removal is depicted in Figure 4.

Fig. 4. An Example of the Result of Residual Noise Removal
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3.2 Character Segmentation
After background denoising, character segmentation is conducted to identify the boundary of
characters. As reviewed in Table 3, contour detection is suitable for segmenting characters in
dark web CAPTCHA images due to its robustness against the dark web-specific noises. Among
various contour detection methods, the border tracing algorithm has been successfully used for
segmenting CAPTCHA images since the algorithm can effectively identify the boundary pixels of
the character region and separate the characters from the background [36]. This is mainly because
characters in text-based CAPTCHA often have distinguishable borders. Border tracing algorithm
has two main steps [25]. In the first step, the image is converted to binary pixels (black and white)
and is scanned from the upper left to the bottom right pixel. In the second step, for each pixel,
the algorithm searches a square neighborhood (e.g. 3x3 pixels) to find the direction of the edges
and define minimal regions to bound the character. The results of such a segmentation process is
illustrated in Figure 5.

Fig. 5. An Example of the Result of Character Segmentation

While effective, sometimes the detected regions obtained from border tracing might not be large
enough to encompass the entire character (e.g., digit ‘6’ in Figure 6(b)). The core border tracing
method has a tendency to yield minimal segments that may not include the entire character. As a
result, incorrect segmentation would result in the false recognition of the corresponding character,
and thereby the entire CAPTCHA image. To address this issue, we enhance border tracing with
subsequent region enlargement to encompass the entire character via a two-step process that
enhances the initial regions found by the core border tracing algorithm:
(1) The initial character regions are first detected by border tracing algorithm (Figure 6(b)).
(2) Subsequently, the detected regions are overlapped with the maximal regions resulted from

dividing the CAPTCHA image into fixed intervals. This could result in detecting a larger
region that bounds the character (Figure 6(c)).

Fig. 6. Our Character Segmentation Process of Enhancing Border Tracing with Interval-based Segmentation

As shown in the figure, characters M and q have a considerable overlap that leads to being
incorrectly identified as one character by border tracing. However, the subsequent interval-based
segmentation identifies them as two imperfect characters (i.e., an incomplete "M" and a "q" with an
extra stroke on the left). Given that the subsequent character recognition component is trained on
various forms of incomplete characters, there is a reasonable chance that the incomplete "M" and
"q" are correctly recognized. Of course, in severe cases of overlapping characters, where it could be
also difficult for a human observer to distinguish characters, the character recognition component
is more likely to make mistakes.
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3.3 Character Recognition
Consistent with prior literature [3, 34], we leverage CNN to detect characters in extracted CAPTCHA
segments. Our character recognition CNN stacks convolutional layers and sampling layers to detect
characters via the architecture described in Appendix A. The convolutional layer extracts features
from local regions of the segmented CAPTCHA image and the sampling layer combines extracted
features across multiple local regions to identify fine-grained features (e.g., lines and edges). Another
convolutional-sampling structure of such kind is then stacked over to extract features from larger
regions through combining lines and edges into more abstract features informative of characters.
Such a stacked structure further addresses CAPTCHA security measures such as rotation and font
size change by jointly considering features from multiple local regions. The extracted features
are then used to detect characters in a fully connected layer. Given the successful CNN training
practices in the literature [23, 32], we used Adam optimizer [16] to minimize the cross entropy
loss to train the model and utilize Rectified Linear Units (ReLU) activation function [21] and the
dropout mechanism to improve the efficiency of model training.

4 EVALUATION
We systematically evaluated the performance of our proposed framework in braking CAPTCHA
images with a testbed encompassing dark web CAPTCHA datasets. In particular, our CAPTCHA
testbed comprised text-based CAPTCHA images from three different dark web datasets and a
widely used open-source CAPTCHA synthesizer. The dark web datasets included three sets of
CAPTCHA images: two sets from carding shops (Rescator-1 and Rescator-2) and one set from a
newly-emerged dark net market (Yellow Brick), as showing in Table 4. All three datasets were
suggested by CTI experts. These datasets were selected based on their popularity and scale in the
dark web. For each dataset, a TOR-routed spider was developed to collect 500 CAPTCHA images.
The three datasets were labeled and inspected by two CTI experts. The second data source of our
testbed was an open-source CAPTCHA synthesizer. We leveraged the synthesizer to generate
CAPTCHA images with controllable security measures that enabled us to create a fair comparison
for different methods on CAPTCHA images with variable character length. These datasets along
with their CAPTCHA examples are summarized in Table 4.

Table 4. Summary of our dark web CAPTCHA testbed

Category Source Amount Character
Length

Character
Type Sample

Rescator-1 500 4 Digit

Dark Web
CAPTCHA Rescator-2 500 5 Digit

Yellow Brick 500 6 Digit+Letter

Open-Source Synthesizer

11,000
for each
charac-
ter

length

4, 5, 6, 7 Digit+Letter

We conducted three experiments to evaluate the effectiveness of our proposed research design:
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• Experiment 1 examined the overall CAPTCHA breaking performance of our proposed frame-
work in comparison with the state-of-the-art baseline methods. This experiment targets
the dark web-specific condition of lacking labeled CAPTCHA images for training. To this
end, we sampled 500 images from each of the dark web CAPTCHA datasets serving as the
evaluation testbed. The CAPATCHA breaking performance was measured by success rate
[1, 37], a commonly used metric representing the percentage of CAPTCHA images that
are successfully recognized [37]. A successful recognition entails correctly recognizing all
characters in the CAPTCHA image. Three state-of-the-art methods from past research, were
used as benchmarks: Image-level CNN [17], Image-level CNN with preprocessing (grayscale
conversion, normalization, and gaussian smoothing) [22], and Character-level CNN with
interval-based segmentation [30].

• Experiment 2 investigated the effect of each component in our proposed DW-GAN framework
through an ablation analysis. To this end, the framework’s major components, including
background denoising, border tracing segmentation, and interval-based segmentation were
removed from DW-GAN framework to evaluate their impact on the automated CAPTCHA
breaking performance. The ablation analysis were thoroughly conducted on all dark web
datasets used in benchmark evaluation in Experiment 1. Also, consistent with Experiment 1,
the success rate was adopted as the evaluation criterion.

• Experiment 3 evaluated the efficacy of DW-GAN components to determine whether back-
ground denoising and character segmentation improved CAPTCHA breaking performance.
Accordingly, this experiment encompassed two sub-experiments as detailed below. We em-
ployed the CAPTCHA synthesizer to generate a wide range of background noise with variable
lengths.
– Experiment 3.1 examined the contribution of the background denoising component to the
overall performance in DW-GAN. We evaluated the effect of our background denoising
component before and after its application to each type of background noise. To measure
the effect, we adopted the structural similarity (SSIM) metirc [24], a widely used metric to
measure the similarity of two images. SSIM can be used to determine the extent to which
the background security measures are counteracted through our background denoising
component. A higher SSIM between the denoised image and its clean version (without
background noise) indicates a more effective removal of background security measures.

– Experiment 3.2 investigated the effect of the character segmentation component on the
overall performance. This experiment compared the performance of DW-GAN with a
benchmark image-level method and two character-level methods to evaluate how character
segmentation improved CAPTCHA breaking performance when character length varied.
In accordance with the common dark web CAPTCHA length, the character lengths ranged
from 4 to 7. The evaluation was based on a 90%-10% train-test split. That is, our training
set contained 50,000 CAPTCHA images (10,000 images for each character length) and the
testing set included 5,000 CAPTCHA images (1,000 images for each character length).

4.1 Results of Experiment 1: Benchmark Evaluation
We compared the performance of DW-GAN to the state-of-the-art CAPTCHA breaking methods
across the dark web datasets. The success rates for each method are shown in Table 5. The asterisks
denote the statistical significance obtained from paired t-test between the results of DW-GAN and
the above-mentioned benchmark methods (P-values are significant at 0.05:*, 0.01:**, 0.001:***).

Three notable observations can be made from the results of Experiment 1. First, comparing
the automated CAPTCHA breaking method in [17] against [22], it is observed that preprocessing
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Table 5. Benchmark Evaluation of DW-GAN against the state-of-the-art automated CAPTCHA breaking
methods across different CAPTCHA datasets from the dark web

Method
Dark Web CAPTCHA

Rescator-
1

Rescator-
2

Yellow
Brick

Image-level CNN only
[17] 63.57%*** 35.05%*** 5.88%***

Image-level CNN +
Preprocessing [22] 70.5%** 36.04%*** 7.84%***

Character-level CNN +
Segmentation [30] 88.12%** 77.23%** 93.72%*

DW-GAN (Ours) 94.4% 97.50% 95.98%

improved the success rate across all datasets. Second, the character-level method proposed by [30]
generally achieved a higher success rate compared to image-level CAPTCHA breaking methods.
Third, and most importantly, our proposed framework with GAN-based background denoising
yielded the highest success rate across all datasets. Overall, DW-GAN outperformed the state-of-the-
art benchmark methods with statistically significant margins in dark web CAPTCHA. DW-GAN’s
performance is attributed to combining background denoising and character recognition in a
unified framework. The contribution of each component is further investigated in Experiment 2
and Experiment 3.

4.2 Results of Experiment 2: Ablation Analysis
To gauge the contribution of each component in the proposed DW-GAN framework, we further
evaluated the CAPTCHA breaking performance (i.e., success rate) by eliminating each major
component in DW-GAN. To retain the basic functionality of CAPTCHA breaking, we utilized at
least one segmentation method as well as the CNN for character recognition. Accordingly, we
eliminated the background denoising component, border tracing segmentation, and interval-based
segmentation in a consecutive manner resulting into three alternative models to compare with the
proposed DW-GAN. The results of the ablation analysis for these three models across the dark web
datasets in Experiment 1 are given in Table 6.

Table 6. Ablation analysis of each component in the DW-GAN’s framework

Model
Dark Web CAPTCHA

Average PerformanceRescator-
1

Rescator-
2

Yellow
Brick

DW-GAN without
Background
Denoising

93.4% 88.12% 21.96% 67.83%

DW-GAN without
Border Tracing
Segmentation

77.2% 88.91% 38.82% 68.21%

DW-GAN without
Interval-Based
Segmentation

63.2% 98.02% 10.00% 57.07%

DW-GAN 94.4% 97.50% 95.98% 95.96%
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Fig. 7. SSIM Change Before and After Background Denoising for Different Security Measure Combinations

As shown in Table 6, all three essential components of DW-GAN in our design significantly
contributed to the performance of automated CAPTCHA breaking on average across all three
datasets. Specifically, eliminating the background denoising component resulted in approximately
28% performance loss (67.83% vs. 95.6% in Table 6) on average across the three datasets. Similarly
removing border tracing segmentation and interval-based segmentation leads to a 27% and 40%
performance drop, respectively (68.21% and 57.07% vs. 95.96%). These results indicate that back-
ground denoising, border tracing segmentation, and interval-based segmentation improved the
performance significantly. We note that for Rescator2, due to less complicated background, border
tracing alone could be sufficient for effective automated CAPTCHA breaking, and thus there is
less need for interval-based segmentation. That is, our DW-GAN framework outperformed with a
larger margin on more complex backgrounds with various noise types.

4.3 Results of Experiment 3.1: Evaluating Background Denoising
To evaluate the effect of our background denoising component, we first compared the SSIM of orig-
inal CAPTCHA images with different types of background noise to clear CAPTCHA images (same
pattern without any background noise). Then we applied our proposed GAN-based background
denoising on the original image and computed the SSIM with respect to the clear CAPTCHA image.
The results of these two comparisons are shown in paired bars for each background noise type in
Figure 7. As seen in the figure, our GAN-based background denoising method shows consistently
higher similarity to the clear image for various types of background noise, including dot, curves,
dot+curves, dense dots, dense curves, and dense dot with dense curves.

The high SSIM index achieved by DW-GAN suggests that GAN-based background denoising is
capable of removing a wide variety of background noise that are widely used in the dark web.

4.4 Results of Experiment 3.2: Evaluating Character Segmentation
To gauge the effect of our proposed segmentation component in DW-GAN, we applied our seg-
mentation method to various lengths of CAPTCHA images and compared the success rate with
other image-level methods as well as common segmentation methods in character-level CAPTCHA
breaking. The corresponding success rates are shown in Table 7.

We highlight two major observations from Table 7. First, while the CAPTCHA breaking perfor-
mance of image-level methods drastically decreased as the character length increased, the variation
in character length had a significantly smaller impact on the CAPTCHA breaking performance
of our proposed segmentation method in DW-GAN. This shows that DW-GAN’s segmentation
method performed better than other segmentation methods. Second, consistent with the result of
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Table 7. Evaluating the effect of the proposed segmentation compoent in DW-GAN on CAPTCHA patterns
with variable lengths

Character
Length

Image-level CNN +
Preprocessing

Character-Level +
Interval-Based Seg

Character-Level +
Border Tracing

DW-GAN’s
Segmentation

4 56.98% 76.92% 70.07% 79.92%
5 48.43% 73.11% 66.51% 74.35%
6 36.88% 67.81% 65.33% 71.87%
7 29.29% 64.27% 59.68% 69.09%

Experiment 1, character-level methods demonstrated a higher success rate than image-level meth-
ods over all character lengths. To further demonstrate the sensitivity of success rate to increasing
the character length for image-level and character-level methods, we plot the performance while
increasing the character length in Figure 8. Observing that DW-GAN maintains a high performance
as character length increases signifies the effectiveness of the enhanced character segmentation
proposed in DW-GAN.

Fig. 8. Sensitivity of Success Rate to Increasing the Character Length

5 DARKWEB CASE STUDY: YELLOW BRICK DNM
We further demonstrate the application of our proposed framework on a real-world DNM. The
purpose of this case study is two-fold. First, we sought to show that our proposed framework could
detect and break the CAPTCHA to facilitate scalable, automated dark web data collection. Second,
we aim to show that our proposed framework was able to effectively remove human involvement
from dark web data collection. Figure 9 illustrates the process of employing DW-GAN for automated
dark web CAPTCHA breaking in a DNM.

DW-GAN can be embedded in a dark web crawler.When a CAPTCHA challenge is encountered in
a targeted dark web platform, DW-GAN is activated to break the CAPTCHA within a few attempts.
The entire process can be broken down into several stages. First, the crawler navigates to the
homepage of the targeted DNM. Parsing the login page, the crawler captures the CAPTCHA image
and send it to our trained DW-GAN component. DW-GAN denoises, segments, and recognizes the
CAPTCHA image. The recognized result would return to our crawler. Finally, the crawler would
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Fig. 9. An Automated Process for Dark Web CAPTCHA Breaking in a Dark Net Market with DW-GAN

iteratively enter the predicted result until the correct prediction occurs (i.e., the platform permits
access). As such, the DW-GAN enhanced crawler is guaranteed to collect illicit product information
without human interaction.

Based on the above automated process in Fig 9, a Tor-routed web crawler was developed and
equipped with DW-GAN to automatically collect illegal advertised product pages from the Yellow
Brick DNM. The crawler first detected the login page and automatically entered credentials. Then,
the crawler collected all Onion links that contained the information of illegal items by sending
HTTP requests to the platform server. Yellow Brick requires re-login and bypassing CAPTCHA
for every 15 HTTP requests on average. Without our automated solution, the web crawler needs
human interventions every three minutes to manually bypass the CAPTCHA challenges issued by
the platform.

Using a crawler enhanced by our DW-GAN, we were able to collect 1,831 illegal products from
Yellow Brick. Among these products, there were 286 cybersecurity-related items, including 102
stolen credit cards, 131 stolen accounts, 9 forged document scans, 44 hacking tools, and 1,223
drug-related products (opioid, cocaine, etc.). Overall, collecting Yellow Brick market with DW-
GAN took about 5 hours without human involvement. In particular, each HTTP request took 8.8
seconds for loading a new webpage; therefore crawling 1,831 pages took 268.5 minutes. Solving
the recurring CAPTCHA challenges (per each 15 HTTP requests) took our DW-GAN crawler 18.6
seconds. Overall, the proposed framework could automatically break CAPTCHA with no more
than 3 attempts. Breaking all CAPTCHA images take about 76 minutes in total for all 1,831 product
pages, a process that is fully automated.

6 CONCLUSION AND FUTURE DIRECTIONS
Text-based CAPTCHA breaking has been a major challenge for collecting large-scale dark web data
for developing proactive CTI. Two major challenges have been the particularly noisy background
and the variable character length of CAPTCHA images. Leveraging GAN and CNN, we propose
a novel and automated framework for breaking text-based CAPTCHA in the dark web. The pro-
posed framework utilizes GAN to counteract background security measures for dark web-specific
CAPTCHA and leverages an enhanced border tracing algorithm to extract segments encompassing
single characters from CAPTCHA images. Our DW-GAN was evaluated on several dark web
CAPTCHA datasets. DW-GAN significantly outperformed the state-of-the-art benchmark meth-
ods on all datasets in the dark web research context, where there is a lack of labeled CAPTCHA
data. Moreover, the proposed framework maintained relatively consistent CAPTCHA breaking
performance when character length varies. While collecting dark web data traditionally requires
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significant human effort, a web crawler equipped with DW-GAN is able to collect large-scale dark
web data without human involvement.

Future research is needed to counteract more sophisticated CAPTCHA patterns in the dark
web. For instance, we have observed some newly emerged small-sized dark web platforms that
complement the text-based CAPTCHAwith a ‘question-answering’ challenge. In addition to solving
the text-based CAPTCHA, these platforms require user to answer a question. For example, the user
may be asked to answer queries such as "adding two numbers" or "the first month of the year."
Enhancing DW-GAN for other emerging CAPTCHA challenges remains as a promising future
research direction.
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A APPENDIX
This section details the specifications and parameter/hyperparameter settings of DW-GAN. The
architecture of DW-GAN was aimed to be parsimonious. To train the deep learning models in DW-
GAN, including the generator and discriminator’s networks, after a light-weight parameter tuning
in a grid search manner, we adopted the learning rate of 0.0035. Also, to utilize the maximum GPU
memory, we set the batch size for training process to 200. The GAN-based background denoising
was effectively trained after 1,000 epochs. Given that the complexity of character recognition is
often less than that of background denoising, effective training the CNN model took 100 epochs.
Table 8 includes selected learning rates from the parameter tuning process.

Table 8. Different learning rates’ impact on DW-GAN success rate

Learning Rate 0.035 0.0035 0.001
DW-GAN 59.2% 94.4% 86.6%

Table 9 summarizes the generator’s architecture in our CAPTCHAGAN for background denoising.
The generator has 5 convolutional layers with 64, 128, 128, 64, and 1 neural units. As noted, the
filter size in convolutional layers was 3 × 3.

Table 9. Generator’s parameter specifications for background denoising in CAPTCHA GAN

Layer
Number Element Parameter Value

1 Convolutional Filter [filter number, size, Stride, pad ] [64, 3x3, 1, 1]
2 Convolutional Filter [filter number, size, Stride, pad ] [128, 3x3, 1, 1]
3 Convolutional Filter [filter number, size, Stride, pad ] [128, 3x3, 1, 1]
4 Convolutional Filter [filter number, size, Stride, pad ] [64, 3x3, 1, 1]
5 Convolutional Filter [filter number, size, Stride, pad ] [1, 3x3, 1, 1]

Table 10 includes the specifications of discriminator’s architecture in our CAPTCHA GAN.
The discriminator encompasses 6 convolutional layers followed by a fully connected layer. These
convolutional layers have 16, 32, 64, 128, 256, and 256 neural units, respectively. Similar to the
generator, 3 × 3 filters were used in the convolutional layers.

Table 10. Discriminator’s parameter specifications for background denoising in CAPTCHA GAN

Layer
Number Element Parameter Value

1 Convolutional Filter [filter number, size, Stride, pad ] [16, 3x3, 1, 1]
2 Convolutional Filter [filter number, size, Stride, pad ] [32, 3x3, 1, 1]
3 Convolutional Filter [filter number, size, Stride, pad ] [64, 3x3, 1, 1]
4 Convolutional Filter [filter number, size, Stride, pad ] [128, 3x3, 1, 1]
5 Convolutional Filter [filter number, size, Stride, pad ] [256, 3x3, 1, 1]
6 Convolutional Filter [filter number, size, Stride, pad ] [256, 3x3, 1, 1]
7 Fully-Connected [neuron number] [1]

Table 11 includes the CNN architecture used for the character-level recognition in DW-GAN.
The CNN architecture has 3 convolution layers (each followed by a max-pooling layer) and 3 fully
connected layers. As noted, ReLU was used as activation function.
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Table 11. Character-Level CNN parameter specifications for character recognition

Layer
Number Element Parameter Value

1
Convolutional

Filter [filter number, size, Stride, pad ] [32, 3x3, 1, 1]

Max Pooling [size, pad] [2x2, 2]

2
Convolutional

Filter [filter number, size, Stride, pad ] [64, 3x3, 1, 1]

Max Pooling [size, pad] [2x2, 2]

3
Convolutional

Filter [filter number, size, Stride, pad ] [64 , 3x3, 1, 1]

Max Pooling [size, pad] [2x2, 2]
4 Fully-Connected [neuron number] [1024]
5 Fully-Connected [neuron number] [256]

6 Fully-Connected [neuron number] [character
number]

Since the activation function and the number of convolutional layers have significant effects on
the performance of the CNN model, we show selected results of their parameter tuning process to
optimize the character recognition. Specifically, for the activation function, we compared ReLU,
Tanh, and Softmax (Table 12). ReLU performed the best for the character recognition task in DW-
GAN. Also, varying the number of convolutional layers for our CNN model indicated that three
convolutional layers perform the best for CAPTCHA breaking. The comparison results are shown
in Table 13.

Table 12. Activation functions’ impact on DW-GAN’s success rate

Activation
Function ReLU Tanh Softmax

DW-GAN 94.4% 74.4% 14.8%

Table 13. The impact of the number of convolutional layers of the character recognition component on
DW-GAN’s success rate

Convolutional
Layer Number 2 3 4

DW-GAN 63.2% 94.4% 90.2%
B ONLINE RESOURCES
The implementation of DW-GAN and its corresponding datasets are available at
https://github.com/johnnyzn/DW-GAN.
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