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Abstract

Multi-exit architectures, in which a stack of processing

layers is interleaved with early output layers, allow the pro-

cessing of a test example to stop early and thus save compu-

tation time and/or energy. In this work, we propose a new

training procedure for multi-exit architectures based on the

principle of knowledge distillation. The method encourages

early exits to mimic later, more accurate exits, by matching

their output probabilities.

Experiments on CIFAR100 and ImageNet show that

distillation-based training significantly improves the accu-

racy of early exits while maintaining state-of-the-art accu-

racy for late ones. The method is particularly beneficial

when training data is limited and it allows a straightfor-

ward extension to semi-supervised learning, i.e. making use

of unlabeled data at training time. Moreover, it takes only a

few lines to implement and incurs almost no computational

overhead at training time, and none at all at test time.

1. Introduction

Over the last years, convolutional networks for image

classification have become progressively better, yet also

bigger and slower. Today’s models that achieve state-of-the-

art performance on benchmarks, such as ImageNet, have

many tens or even hundreds of layers and require billions

floating point operations to classify a single image. Clas-

sifying a single image can take several seconds, unless fast

hardware is available.

For many practical problems, however, execution speed

is as important as classification accuracy. For example, on

mobile devices, execution speed directly influences battery

life and heat release. For robotics applications, such as self-

driving cars, low latency is crucial for operating under real-

time constraints. Therefore, there have recently also been
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Figure 1: Illustration of the proposed method: distillation-

based training (bottom) for a multi-exit a architecture (top).

improved efforts to create convolutional networks that are

optimized for fast evaluation and energy efficiency even at

the cost of sacrificing classification accuracy.

What both trends have in common, though, is that once

the models have been designed and trained, their accuracy

and the amount of computation required for inference are

fixed. Hence, these approaches are only applicable when

the test-time inference budget is constant and known in ad-

vance, because only then can an appropriate architecture be

chosen. When the time budget is unknown or varies over

time, e.g. due to concurrently running jobs or a dynamic

change of processor speed, any fixed model architecture is

suboptimal: a model that is fast enough to run under all

conditions yields suboptimal accuracy in situations where

the available computational budget is actually higher than

the worst case. A more accurate, but slower, model might

fail to provide decisions at prediction time when the avail-

able budget falls below what the network needs to finish its

computation.

In this work, we adopt a paradigm that overcomes the

limitations described above: anytime prediction, that is, the
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ability to trade off accuracy and computation at test time

with a single model and on a per-example basis. A typical

anytime prediction system quickly produces a crude initial

prediction and then gradually improves it. At any time, a

valid prediction for the given input is available to be used in

case the time budget for the classification process runs out.

Hence, anytime systems are more robust and flexible under

uncertain or changing conditions and thereby overall more

resource-efficient.

For the task of image classification with convolutional

networks, anytime prediction can be realized via multi-exit

architectures, in which a sequence of feature layers (e.g.

convolutional) is augmented with early exits at different

depths. These are standard classification layers acting on

the feature representation that the network had computed

up to this stage. The exits form a sequence of increas-

ingly complex classifiers (see Figure 1, “Prediction” box),

in which later layers reuse the representations, and thereby

computations, of the earlier layers. To make a prediction, an

input image is propagated through the stack of layers (left

to right in Figure 1). When the process is interrupted, the

model outputs either one of the already evaluated exits, or

an ensemble of all of them.

Multi-exit architectures are typically trained with a

multi-task objective: one attaches a loss function to each

exit, for example cross-entropy, and minimizes the sum of

exit-wise losses, as if each exit formed a separate classifi-

cation task. On the one hand, this is a canonical choice:

not knowing which exits will be used at prediction time,

we want all of them to perform well, so we should train all

of them for best classification quality. On the other hand,

however, this choice ignores a lot of the prior knowledge

we have about the anytime learning problem in general, and

about the structure of the multi-exit architecture in partic-

ular. For example, while in multi-task learning, different

classifiers could have different label sets and be trained on

different data, in the multi-exit situation, all classifiers share

the same label set and training data. Also, multi-task learn-

ing is known to work best if all classifiers are of comparable

complexity and quality, such that none of the loss term dom-

inates the others. In contrast, in the multi-exit case we know

a priori that the classifiers from later exits have more capac-

ity and should be more accurate than the ones from early

exits, as this is in fact the main motivation for the anytime

architecture.

Our main contribution in this paper is a new objective for

training multi-exit architectures based on knowledge distil-

lation. The resulting training method

1) leads to substantially improved classification accuracy,

especially for early exits,

2) requires no change to the underlying architecture,

3) is conceptually simple and easy to implement,

4) opens up a natural way to make use also of unlabeled

data when training multi-exit architectures.

The main working principle of distillation-based train-

ing for multi-exit architectures is the sharing of informa-

tion between exits. Specifically, it does so in an asymmetric

way: information flows from exits with high classification

accuracy to those with lower accuracy.

Several aspects of the classification task are potentially

beneficial to transfer. Take, for example, the information

which training examples are easy, difficult, or even outliers.

A classifier can benefit from this information, because if it

tries too hard to correctly classify difficult examples, the re-

sult will be an inefficient assignment of its model capacity

and potentially overfitting. Another aspect is the question of

which classes are semantically similar to each other. Know-

ing this will allow a classifier to model them with similar

feature representations, thereby resulting in a smoother de-

cision function and, again, a lower risk of overfitting.

Neither which examples are easy or hard examples, nor

which class are similar to each other can be extracted sim-

ply from the ground truth labels. Therefore, this informa-

tion is not immediately available to the exits when trained

using the multi-task objective. The information can be ex-

tracted, however, from the probabilistic outputs of a well-

trained classifier: hard examples typically have a lower con-

fidence score for the selected label than easy ones, and sim-

ilar classes tend to be more co-activated in the outputs than

dissimilar ones. We can transfer this information from late

to early exits simply by encouraging early exits to mimic

the probabilistic outputs of later exits. In practice, this is

achieved by minimizing the cross-entropy between the out-

puts, with an additional temperature-scaling step that we de-

tail in Section 3.5.

The temperature-scaled cross-entropy has been used in

knowledge distillation to transfer information from one net-

work to another. Therefore, we refer to this loss term as dis-

tillation loss. The overall system is illustrated in Figure 1

(“Training” box).

It has been observed [15] that distillation acts similarly

to regularization, i.e. it is particularly useful when training

large networks from relatively little labeled training data.

The same is the case for us: we expect distillation-based

training to be the most useful when the amount of labeled

training data is limited, as is often the case in practice. As

we will show in Section 4, our experiments confirm this

expectation.

Distillation-based training has another advantage: the

distillation loss can be computed even for data that has no

ground truth labels available. Consequently, we obtain a

straightforward way of training multi-exit architectures in a

semi-supervised regime. Note that conventional multi-task

based training does not have this ability, because all its loss

terms need data with ground truth labels.
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2. Related work

Anytime prediction. The roots of anytime computation go

back to the work of [6, 16]. In [6], anytime algorithms are

defined for the first time, and they become widely popular

in planning and control [8, 29, 49].

In the context of statistical learning, anytime classifiers

were preceded by cascades [37, 42, 43]. These are mod-

els with variable, instance-dependent runtime; however,

they cannot be stopped exogenously. Early examples of

truly anytime classifiers were based on streaming nearest

neighbors [41] or on classifier ensembles such as decision

trees [9], random forests [10], or boosting [13]. A parallel

line of work aimed at developing techniques for adapting

an arbitrary ensemble to the anytime setting in a learner-

agnostic way [3, 11, 40]. These methods usually execute

individual classifiers in a dynamically determined, input-

dependent order.

More recently, in the context of convolutional networks,

two broad approaches to anytime prediction have gained

prominence: a) networks whose parts are selectively exe-

cuted or skipped at test time [23, 30, 44, 45], or b) networks

with additional exits [19, 20, 39], from which an appropriate

one is chosen at test time. We only discuss multi-exit archi-

tectures in detail, as this is the class of models to which our

proposed training technique applies.

Multi-exit architectures. The first work to propose attach-

ing early exits to a deep network was [39], where standard

image classification architectures such as LeNet, AlexNet

and ResNet, were augmented by early exits. Huang et al.

[19] were the first to propose a custom multi-exit architec-

ture, the Multi-Scale DenseNet, motivated by the observa-

tion that early exits interfere with the role of early layers

as feature extractors for later use. The MSDNet was the

state-of-the-art multi-exit architecture until very recently

(see [48]) and it is the one we use in our experiments. Kim

et al [20] propose a doubly nested architecture suitable for

memory-constrained settings. Finally, there is recent work

on discovering multi-exit architectures by neural architec-

ture search (NAS) [48].

While the main contributions of these works are archi-

tectural, our focus is on training. In all of these works ex-

cept [48] (which employs NAS-specific training), multi-exit

networks are trained by minimizing the sum of exit-wise

losses. We propose a novel training procedure that is appli-

cable to any of these multi-exit architectures.

Orthogonally to the subject of this work, networks with

early exits have also been proposed for other purposes, such

as providing stronger gradient signals for training [24], or

multi-resolution image processing [46].

Distillation. Distillation is a popular technique for knowl-

edge transfer between two models. Although similar tech-

niques have been widely considered already in [2, 4, 5, 25,

28], distillation in its most well-known form was introduced

only relatively recently in [15].

Since then, the technique has been found to benefit a

wide array of applications, including transferring from one

architecture to another [12], compression [17, 32], integra-

tion with first-order logic [18] or other prior knowledge

[47], learning from noisy labels [26], defending against ad-

versarial attacks [31], training stabilization [35, 38], few-

shot learning [21], or policy distillation [36]. In the vast

majority of applications, including the work cited above,

the teacher network is fixed.

Notable exceptions are [1], where distillation is used in

a distributed optimization setting to ensure consistency be-

tween different copies of a model, [33], where a model is

self-trained by distillation from its previous version’s pre-

dictions, and [27, 34], where distillation between stored pre-

dictions from the past and current predictions is used as a

regularizer during incremental training. In contrast, we pro-

pose distillation from one part of a model to another part. To

our knowledge, no previous work has addressed this setting.

3. Distillation Training of Multi-Exit Networks

In this section, we introduce the mathematical notation

and the necessary background for the discussion of the pro-

posed distillation-based training of multi-exit architectures.

Throughout the paper, we consider the case of multi-class

classification with an input set X, e.g. images, and an output

set Y = {1, . . . ,K}, where K is the number of classes.

3.1. MultiExit Architectures

Multi-exit architectures are layered classification archi-

tectures with exits at different depths, see Figure 1 for an

illustration. For a system with M exits, this results in a se-

quence (p1, . . . ,pM ) of probabilistic classifiers pm : X→
∆K , each of which maps its input to the probability sim-

plex ∆K , i.e. the set of probability distributions over the

K classes. We think of p1, . . . ,pM as being ordered from

least to most expressive (and computationally expensive).

In principle, the classifiers may or may not share weights

and computation, but in the most interesting and practically

useful case, they do share both.

3.2. Prediction

At prediction time, the multi-exit system can operate in

two different modes, depending on whether the computa-

tional budget to classify an example is known or not.

Budget-mode. If the computational budget is known, the

system can directly identify a suitable exit, pM ′(x), to eval-

uate. This way, it only has to evaluate the shared parts of the

architecture and can save the computation of having to eval-

uate also the earlier exits. How exactly the specific exit is

chosen is model-dependent. In this paper, we first determine
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the runtime and quality of any single exit on a validation set.

Then, for any target runtime, we output the decision of the

exit with highest validation accuracy that runs within the

available budget.

Anytime-mode. If the computational budget is unknown,

i.e. for anytime prediction, after receiving a test input x, the

system starts evaluating the classifiers p1,p2, . . . in turn,

reusing computation where possible. It continues doing

this until it receives a signal to stop – say this happens

after the M ′-th exit – at which point it returns the pre-

dictions of the ensemble created from the evaluated exits,
1

M ′

∑M ′

m=1 pm(x).

3.3. Distillation Training Objective

Our main contribution is a new training objective

for multi-exit architectures. Given a training set,

{(xn, yn)}
N
n=1, we propose to train the multi-exit architec-

ture by a combination of a classification loss, Lcls and a

distillation loss, Ldist,

1

N

N
∑

n=1

[

Lcls(xn, yn) + Ldist(xn)
]

. (1)

Distillation loss. The second term, Ldist, is where our main

contribution lies, as it introduces the possibility for different

exits to learn from each other.

To introduce it, we first remind the reader of the clas-

sical distillation framework as introduced in [15]: assume

we want a probabilistic classifier s (called the student) to

learn from another classifier t (called the teacher). This can

be achieved by minimizing the (temperature-scaled) cross-

entropy between their output distibutions,

ℓτ (t, s) = −τ2
K
∑

k=1

[t1/τ (x)]k log[s
1/τ (x)]k, (2)

for some temperature τ ∈ R+, with respect to the parame-

ters of s, where

[s1/τ (x)]k =
sk(x)

1/τ

∑K
l=1 sl(x)

1/τ
(3)

is the distribution obtained from the distribution s(x) by

temperature-scaling, and [t1/τ (x)]k is defined analogously.

Note that for typical network architectures, for which the

outputs are the result of a softmax operation over logits,

temperature scaling can be done efficiently by simply di-

viding all logits by τ .

The temperature parameter allows controlling the soft-

ness of the teachers’ predictions: the higher the temper-

ature, the more suppressed is the difference between the

largest and the smallest value of the probability vector. This

allows compensating for the fact that network outputs are

often overconfident, i.e. they put too much probability mass

Algorithm 1: Distillation-Based Training

given: T, µ, τ∗

1 T(:)← T(1) ∪ · · · ∪ T(M)
2 τ ← 1
3 for (x, y) in data do

4 x′ ← shared part of model(x)

5 for m in 1, . . . ,M do

6 pm ← softmax(exitm(x′))

7 tm ← detach(softmax(exitm(x′)/τ ))

8 end

9 loss← 1
M

∑M
m=1 ℓ(y,pm)

+ 1
M

∑M
m=1

1
|T(m)|

∑

t∈T(m) ℓ
τ (tt,pm)

10 loss.gradient update()

11 if max
(

1
|T(:)|

∑

m∈T(:) tm

)

> µ then τ ← ττ∗

12 end

on the top predicted class, and too little on the others. The

factor τ2 in Equation (2) ensures that the temperature scal-

ing does not negatively affect the gradient magnitude.

Returning to the multi-exit architecture, we follow the

same strategy as classical distillation, but use different exits

of the multi-exit classifiers both as students and teachers.

For any exit m, let T(m) ⊂ {1, . . . ,M} (which could be

empty) be the set of teacher exits it is meant to learn from.

Then we define the overall distillation loss as

Ldist(xn)=
1

M

M
∑

m=1

1

|T(m)|

∑

t∈T(m)

ℓτ (pt(xn),pm(xn)),

(4)

In practice, there are different ways how to choose the

set of teachers. The simplest choice, where all exists learn

only from the last one, i.e. T(m) = {M} for m < M and

T(M) = ∅, has worked well for us, so we propose it as the

default option. However, we also study other setups, for ex-

ample each exit distilling from all later exits; see Section 4.

Classification loss. The first term in (1) is a standard multi-

class classification loss that acts separately on each exit,

Lcls(xn, yn) =
1

M

M
∑

m=1

ℓ(yn,pm(xn)) (5)

where ℓ(y,p) = − log py(x) is the cross-entropy loss.

3.4. Optimization

We minimize the training objective (1) using standard

gradient-based methods with mini-batches. In particular, all

exits are trained at the same time and on the same data. We

provide the pseudo-code (for single sample batches) in Al-

gorithm 1. It consists largely of standard gradient-based op-
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timization. However, two aspects are specific to distillation-

based training: partial detaching (detach; line 7), and tem-

perature annealing (line 11).

Partial detaching. When minimizing the loss, we have

to make sure that indeed only the student learns from the

teacher and not vice versa. We achieve this by treating the

teachers’ predictions, pt(xn), as constant for gradient cal-

culation of the distillation term (4).

Temperature annealing. Over the course of training, net-

works tend to grow more confident. In the multi-exit set-

ting, this also applies to exits that serve as teachers (see

Figure 6). Therefore, increasingly higher temperatures are

needed to “soften” their outputs, and we achieve this by in-

creasing the temperature during training. For this, we in-

troduce an adaptive annealing scheme that aims at keeping

the teachers’ outputs roughly constant: we define the confi-

dence of a classifier to be the maximum of the output vector

of class probabilities, averaged over a set of examples. Let

µ be an upper bound for the desired teacher confidence. We

initialise the temperature at τ0 = 1 and multiply it by a con-

stant τ∗ > 1 whenever the teachers’ average temperature-

adjusted confidence for a training batch exceeds µ.

3.5. Semisupervised training

A characteristic property of the distilliaton loss (4) is that

it does not depend on the labels of the training data. This

means it can also be computed from unlabeled training data,

providing us with a straightforward way of training multi-

exit architectures in a semi-supervised way.

Assume that, in addition to the labeled training set

{(xn, yn)}
N
n=1, we have an additional set of unlabeled train-

ing examples, {xn}
N ′

n=N+1, potentially with N ′ ≫ N . We

then define the semi-supervised training objective as

1

N

N
∑

n=1

Lcls(xn, yn) +
1

N ′

N ′

∑

n=1

Ldist(xn). (6)

We can minimize this objective using the same techniques

as in the fully-supervised case and, in fact, with only minor

modifications to the source code.

4. Experiments

In this section, we report on our experimental results,

which, in particular, show that distillation-based training

consistently outperforms the standard training procedure

for multi-exit architectures on image classification bench-

marks: ImageNet (subsets) and CIFAR100 (subsets, as well

as the full dataset). We further present experiments showing

the tentative benefit of semi-supervised distillation when

unlabeled training data is available.

We also report on in-depth experiments that provide in-

sight into the working mechanism of the proposed distilla-

tion based training, in particular the temperature annealing

scheme, and we discuss the choice of teachers.

4.1. Experimental Setup

Datasets. We report on experiments on two standard

datasets. For CIFAR100 [22], we follow the default split,

using 50,000 images (500 for each of 100 classes) for train-

ing and model selection, and we report the accuracy on the

remaining 10,000 test examples. For ImageNet (ILSVRC

2012) [7], we use the 1.2 million train images of 1000

classes for training and model selection. We report the ac-

curacy on the 50,000 images of the ILSVRC val set. Dur-

ing training, we apply data augmentation as in [14, 19]. For

testing, we resize the images to 256×256 pixels and center-

crop them to 224 × 224. For both datasets, we pre-process

all images by subtracting the channel mean and dividing by

the channel standard deviation.

Because we are particularly interested in the low-data

regime, we perform experiments using only subsets of the

available data: by ImageNet(X) we denote a dataset with

X randomly selected examples from each ImageNet class

(which are then split 90%/10% into a training and a model

selection part). By CIFAR(X) we denote subsets of CI-

FAR100 that are constructed analogously to the above, but

always with 50 images used for model selection (using 10%

would be too few for this dataset), and the remaining X−50
for training. As additional unlabeled data for the experi-

ments on semi-supervised learning we use 500−X (in the

case of CIFAR100) or 700 − X (in the case of ImageNet)

images per class, sampled randomly from all remaining im-

ages, i.e. the ones that were not selected as training or vali-

dation data (nor as test data, of course).

Model architecture. We use the Multi-Scale DenseNet

[19], a state-of-the-art multi-exit architecture with convolu-

tional blocks arranged in a grid of multiple scales (rows)

and multiple layers (columns). We train the MSDNets

ourselves, following the original architectures and hyper-

parameters.1 The CIFAR MSDNet has 3 × 24 blocks and

11 exits, one attached to every second layer, starting from

layer 4. The ImageNet MSDNet has 4 × 38 blocks and 5
exits, one on every seventh layer, starting from layer 10.

Baseline. We compare distillation training to the traditional

way of training multi-exit architectures, namely by mini-

mizing the exit-wise loss (used e.g. in [19, 20, 39]),

1

NM

N
∑

n=1

M
∑

m=1

ℓ(yn,pm(xn)). (7)

Note that this coincides with using just the classification

loss (5) of our training objective. Because labels for all

1Our implementation achieves very similar performance to the original

MSDNet, e.g. ≈ 75% accuracy on CIFAR100.
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Figure 2: Top-5 accuracy as a function of computational budget (denominated in available exits). MSDNet trained by the exit-

wise loss (blue) vs. trained by distillation (green) vs. trained by semi-supervised distillation (red) on ImageNet ILSVRC2012

with 100, 300, 500, and all available (≥ 700) images per class.

ImageNet(100) ImageNet(300) ImageNet(500) ImageNet(full)

Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation

Exit 1 64.4 ± 0.4 68.1 ± 0.5 68.1 ± 0.4 79.5 ± 0.2 82.3 ± 0.2 82.3 ± 0.3 83.4 ± 0.2 85.6 ± 0.1 85.4 ± 0.1 87.8 ± 0.2 88.8 ± 0.1
Exit 2 67.1 ± 0.3 69.2 ± 0.6 69.5 ± 0.1 82.1 ± 0.2 83.9 ± 0.3 84.0 ± 0.5 86.3 ± 0.2 87.3 ± 0.2 87.1 ± 0.3 90.4 ± 0.1 90.7 ± 0.1
Exit 3 68.1 ± 0.5 69.3 ± 0.6 69.7 ± 0.4 83.0 ± 0.3 84.2 ± 0.3 84.3 ± 0.6 87.3 ± 0.3 87.7 ± 0.3 87.8 ± 0.4 91.5 ± 0.1 91.3 ± 0.2
Exit 4 68.2 ± 0.6 69.3 ± 0.6 69.7 ± 0.4 83.1 ± 0.3 84.2 ± 0.3 84.3 ± 0.6 87.5 ± 0.3 87.7 ± 0.3 87.8 ± 0.4 91.8 ± 0.1 91.5 ± 0.1
Exit 5 68.1 ± 0.6 69.3 ± 0.6 69.7 ± 0.4 83.3 ± 0.3 84.2 ± 0.3 84.3 ± 0.6 87.8 ± 0.3 87.7 ± 0.3 87.8 ± 0.4 92.3 ± 0.1 91.7 ± 0.2

Table 1: Top-5 accuracy in % (mean ± 1.96 stderr) for different computational budgets (denominated in available exits).

MSDNet trained by the exit-wise loss vs. trained by distillation vs. trained by semi-supervised distillation on ImageNet with

100, 300, 500 and all available (≥ 700) training images per class. Bold values indicate statistically significant improvements.

training examples are needed to compute the loss, (7) does

not have an obvious extension to semi-supervised training.

Optimization and hyper-parameters. We train all mod-

els from a random initialization by SGD with Nesterov mo-

mentum, an initial learning rate of 0.5, a momentum weight

of 0.9, and a weight decay of 10−4. For CIFAR100, we set

the batch size to 64 and train for 300 epochs. The learning

rate is divided by 10 after epochs 150 and 225. For Ima-

geNet, we set the batch size to 256 and train for 90 epochs.

The learning rate is divided by 10 after epochs 30 and 60.

For the temperature annealing we use a confidence limit

of µ = 0.5 for CIFAR100 and µ = 0.1 for ImageNet, and

τ∗ = 1.05 as the temperature multiplier.

Repeated runs. We repeat each experiment 5 or 10 times,

each time with a different random subset of the training

data and different weight initialization. We report the av-

erage performance across the repeated runs as well as its

95% confidence interval (i.e. 1.96 times the standard error).

4.2. Main results: budgetmode accuracy

We first report results from experiments when operating

the model in budget-mode, i.e. with a known time budget at

test time. As described in Section 3.2, for any value of the

budget, we identify the best exit (according to the validation

set) that can be computed within the budget, and evaluate

its decision. This is often the latest exit among the available

ones, but not always: for example, in the low-data regime,

the additional capacity of a late exit may make it more likely

to overfit, and an intermediate exit might perform better.

Figures 2 and 3 show the results for ImageNet and CI-

FAR100, respectively. Numeric results can be found in Ta-

bles 1 and 2. For each training procedure, we report the

resulting model’s accuracy for different values of the bud-

get: when only Exit1 is available, when Exit1 and Exit2 are

available, and so on.

ImageNet results. Figure 2 and Table 1 compare distil-

lation training and exit-wise training. Distillation training

consistently outperforms exit-wise training, in many set-

tings substantially. For most computational budgets, the

distillation-trained model has a higher or comparable ac-

curacy, with accuracy gains of up to 3.8%. Conversely, to

achieve any given accuracy, the distillation-trained model

typically requires far less computation, especially in the

data-constrained regime. For example, in the case of Ima-

geNet(100), already Exit1 suffices to match the accuracy of

the exit-wise trained model at any budget. Similarly, in the

case of ImageNet(300), already at the time Exit2 becomes

available, the distillation-trained model dominates the exit-

wise trained model at any budget.

Overall, two main factors seem to affect the performance

gap: a) The amount of training data: comparing the re-

sults for ImageNet(100) to those for ImageNet(300), Ima-

geNet(500) and ImageNet(full), we see that the smaller the

training set, the bigger the benefit from distillation. In the

regime of very large data (full ImageNet), distillation seems

to trade off the accuracy of early and late exits, instead of

providing a uniform improvement. This agrees with earlier

studies, e.g. [15], that found distillation to have a regular-
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Figure 3: Top-5 accuracy as a function of computational budget (denominated in available exits). MSDNet trained by the

exit-wise loss (blue) vs. trained by distillation (green) vs. trained by semi-supervised distillation (red) on CIFAR100 with

150, 250, 350, and 500 images per class.

CIFAR(150) CIFAR(250) CIFAR(350) CIFAR(500)

Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation Distl. semi-sup. Exit-wise loss Distillation

Exit 1 72.4 ± 1.3 78.7 ± 0.4 79.9 ± 0.4 80.6 ± 0.4 85.6 ± 0.2 86.5 ± 0.3 84.5 ± 0.3 88.1 ± 0.3 88.5 ± 0.3 87.5 ± 0.3 90.0 ± 0.2
Exit 2 75.5 ± 0.7 80.5 ± 0.3 81.1 ± 0.4 83.4 ± 0.3 87.5 ± 0.2 88.2 ± 0.3 87.2 ± 0.3 90.1 ± 0.2 90.4 ± 0.2 89.8 ± 0.1 92.0 ± 0.2
Exit 3 77.4 ± 0.6 80.9 ± 0.4 81.0 ± 0.5 84.9 ± 0.3 88.4 ± 0.2 88.5 ± 0.2 88.8 ± 0.2 91.1 ± 0.3 91.2 ± 0.2 91.2 ± 0.1 92.9 ± 0.2
Exit 4 78.4 ± 0.4 81.2 ± 0.4 81.0 ± 0.5 86.0 ± 0.3 88.6 ± 0.2 88.7 ± 0.2 89.6 ± 0.2 91.3 ± 0.3 91.5 ± 0.2 91.8 ± 0.2 93.1 ± 0.1
Exit 5 79.2 ± 0.3 81.2 ± 0.4 81.0 ± 0.5 86.8 ± 0.2 88.8 ± 0.3 88.7 ± 0.2 90.1 ± 0.2 91.4 ± 0.3 91.5 ± 0.1 92.3 ± 0.1 93.1 ± 0.2
Exit 6 79.8 ± 0.2 81.2 ± 0.4 81.0 ± 0.5 87.4 ± 0.2 88.8 ± 0.3 88.7 ± 0.2 90.5 ± 0.3 91.5 ± 0.4 91.5 ± 0.2 92.6 ± 0.1 93.1 ± 0.2
Exit 7 80.1 ± 0.4 81.1 ± 0.3 81.0 ± 0.5 87.6 ± 0.3 88.8 ± 0.3 88.7 ± 0.2 90.7 ± 0.2 91.5 ± 0.4 91.5 ± 0.2 92.9 ± 0.1 93.1 ± 0.2
Exit 8 80.3 ± 0.4 81.1 ± 0.3 81.0 ± 0.5 87.9 ± 0.3 88.8 ± 0.3 88.7 ± 0.2 90.8 ± 0.2 91.5 ± 0.4 91.5 ± 0.2 93.0 ± 0.1 93.1 ± 0.2
Exit 9 80.3 ± 0.5 81.1 ± 0.3 81.0 ± 0.5 88.0 ± 0.3 88.8 ± 0.3 88.7 ± 0.2 90.8 ± 0.2 91.5 ± 0.4 91.5 ± 0.2 93.1 ± 0.1 93.1 ± 0.2
Exit 10 80.4 ± 0.5 81.1 ± 0.3 81.0 ± 0.5 88.0 ± 0.3 88.8 ± 0.3 88.7 ± 0.2 90.8 ± 0.3 91.5 ± 0.4 91.5 ± 0.2 93.1 ± 0.2 93.1 ± 0.2
Exit 11 80.3 ± 0.5 81.1 ± 0.3 81.0 ± 0.5 87.9 ± 0.3 88.8 ± 0.3 88.7 ± 0.2 90.8 ± 0.2 91.5 ± 0.4 91.5 ± 0.2 93.1 ± 0.2 93.1 ± 0.2

Table 2: Top-5 accuracy in % (mean ± 1.96 stderr) for different computational budgets (denominated in available exits).

MSDNet trained by the exit-wise loss vs. trained by distillation vs. trained by semi-supervised distillation on CIFAR100 with

150, 250, 350, and 500 images per class. Bold values indicate statistically significant improvements.

izing effect, i.e. it helps prevent overfitting in the low-data

regime. b) The inference budget: within each subplot, the

largest gains are realised for the smallest inference budgets.

Intuitively, this makes sense, as the earliest exits can benefit

the most from a teacher during learning. In combination, the

results suggest that distillation training can provide a large

accuracy boost, especially when the amount of training data

and/or the computational resources at test time are limited.

Figure 2 and Table 1 also show results for the semi-

supervised variant of distillation-based training, as de-

scribed in Section 3.5. We observe an additional small

improvement over the fully-supervised variant, especially

when labeled data is limited and unlabeled data plentiful.

CIFAR100 results. We present analogous results for CI-

FAR100 in Figure 3 and Table 2. We observe similar trends

as for ImageNet, though in this case distillation training uni-

formly outperforms exit-wise training and yields an up to

6.3% improvement in accuracy for a fixed budget. Con-

versely, distillation training enables the resulting model to

stop already after Exit2 or Exit3 with comparable accuracy

as the conventionally trained model when executed in full.

As previously for ImageNet, here, too, we observe that the

gains from distillation are largest when training data is lim-

ited, and when the inference budget is low.

The semi-supervised variant provides an additional small

but consistent improvement. For example, for Exit1, the

additional unlabeled data translates into 1.2%, 0.9%, and

0.4% increase in accuracy for CIFAR(150), CIFAR(250),

and CIFAR(350) respectively.

4.3. Main results: anytimemode accuracy

In a second set of experiments, we operate the multi-exit

model in anytime-mode, i.e. the model evaluates all its exits

in turn until the (unknown) computational budget is spent, at

which point it returns the ensembled prediction of all com-

pleted exits. As before, we report multiclass accuracy for

different computational budgets, this time denominated in

the number of completed exits, or the size of the ensemble.

The results for ImageNet and CIFAR100 are shown in

Figures 4 and 5 respectively. Due to lack of space, the

corresponding tables with numeric results are deferred to

the supplemental material. The results are similar to those

for budget-mode evaluation. Across datasets, dataset sizes

(except for the very large-scale regime), and computation

budgets, the models trained with distillation clearly outper-

form the model trained without it. The results for semi-

supervised learning are less clear: for early exits, the unla-

beled data often helps, but we observe a small drop of ac-

curacy of the late exits for CIFAR(150). Still, the proposed

method outperforms the exit-wise trained model.
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Figure 4: Top-5 accuracy of first-m-exits ensembles (m = 1, . . . , 5) trained by the exit-wise loss (blue) vs. trained by

distillation (green) vs. trained by semi-supervised distillation (red) on ImageNet ILSVRC2012 with 100, 300, 500 or all

available (≥ 700) training images per class.

Figure 5: Top-5 accuracy of first-m-exits ensembles (m = 1, . . . , 11) trained by the exit-wise loss (blue) vs. trained by

distillation (green) vs. trained by semi-supervised distillation (red) on CIFAR100 with 150, 250, 350 or 500 images per class.
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Figure 6: Confidence of MSDNet’s last exit with and

without temperature annealing throughout training on CI-

FAR(150). At epochs 150 and 225, the learning rate drops.

4.4. Additional experiments

Temperature annealing. In this section, we provide fur-

ther insight and justification for the proposed temperature

annealing scheme. Figure 6 shows the teacher’s confidence

(blue) during training. One can see that it changes markedly

and generally increases. The proposed temperature-scaling

procedure reacts to this by raising the temperature over time

(purple). The result is that the temperature-adjusted con-

fidence (green) remains roughly constant, and slightly be-

low the confidence limit µ (red). We find that temperature-

annealing performs as well as the best fixed temperature

(see Figure 7), while being easier to tune.
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Figure 7: Top-5 accuracy of five models trained by dis-

tillation, each with a different temperature setting, on CI-

FAR(250). Results for different computational budgets in

both the budget-mode (left) and the anytime-mode (right).

Choice of teachers. For all experiments reported so far, we

used the last exit as the teacher for all other exits. We also

performed exploratory studies on how the choice of teacher

affects the overall performance, but found the effect to be

minor. Details can be found in the supplemental material.

5. Conclusion

In this work, we propose distillation-based training for

multi-exit image classification architectures. The method is

conceptually simple, architecture-agnostic, and as our ex-

periments show, it provides large and robust improvements

over the state-of-the-art training procedure, especially in

data- or computation-constrained settings. It also naturally

supports learning from additional unlabeled training data.
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