
TsuNAME Public Disclosure and
Security Advisory

Giovane C. M. Moura (1) Sebastian Castro (2)

John Heidemann (3) Wes Hardaker (3)

1: SIDN Labs 2: InternetNZ 3: USC/ISI
https://tsuname.io

May 6, 2021

Summary

This document describes TsuNAME, a vulnerability that can be exploited
to DDoS authoritative DNS servers, such as the ones ran by top-level do-
main (TLDs) operators.

We provide recommendations to authoritative server operators on how to mit-
igate the issue in their zones (§4) and to resolver software developers and
operators to check if their software is vulnerable (§5).

Together with this Security Advisory, we release also a technical report that
includes a detailed analysis of TsuNAME events [7].

1 Introduction

We have identified a DNS vulnerability we call “TsuNAME”. It affects DNS
resolvers and can be exploited to attack authoritative servers. Resolvers vul-
nerable to TsuNAME will send non-stop queries to authoritative servers that
have cyclic dependent records [10]. While one resolver is unlikely to overwhelm
an authoritative server, the aggregated effect from many looping, vulnerable
recursive resolvers may as well do.

This document is divided as follows:

• §2 presents the vulnerability

• §3 discusses the potential impact on authoritative servers

• §4 shows how authoritative server operators can remediate their zones

• §5 shows how resolver operators can detect if their software is bogus.

• §6 covers the responsible disclosure steps we have taken since then, and
shows two cases of large public resolver operators that fixed their soft-
ware.

1

https://tsuname.io


 0
 200
 400
 600
 800

 1000
 1200

30
/01

06
/02

13
/02

20
/02

27
/02

 Cyclic Dependency

D
ai

ly
 Q

ue
rie

s 
(m

illi
on

)

Day (2020)
Domain A Domain B All Domains

Figure 1: Query volume timeseries for all domains and cyclic dependent do-
mains (A and B)

2 The TsuNAME vulnerability

The TsuNAME vulnerability allows for an adversary to exploit vulnerable re-
cursive resolvers, which will then send a very large volume of queries to the
targeted authoritative servers.

For this to happen, three things are necessary:

1. Cyclic dependent NS records (§2.2)

2. Vulnerable recursive resolvers (§2.3)

3. User queries to start/drive the process

This is not theoretical, and has happened multiple times in the past – we
have evidence of happening at least with four ccTLDs and one gTLD. Next we
described what happened to the .nz ccTLD.

2.1 The .nz event

On 2020-02-01, the authoritative servers for the .nz experienced a surge in its
total traffic – roughly a 50% increase, from 800M to 1.2B daily queries (Figure 1).
Upon investigation, the .nz operators determined that the cause of this surge
in traffic was due to a configuration error in two domains only. The error was that
the two domains were misconfigured with cyclic dependencies (§2.2).

This configuration error caused the daily queries for these two domains to
go from 35k to an average of 269M (peaking at 334M in one day) – a staggering
7643× traffic growth (shaded area in Figure 1, as seen by the .nz authoritative
servers). The event only stopped after 16 days when .nz operators removing
the cyclic dependency by removing the affected delegation.

Notice that a simple misconfiguration of two domains lead to 50% traffic
growth. One may wonder what would happen if a motivated attack would
carry out this with hundreds or thousands of domains.

2



2.2 Cyclic Dependency

TsuNAME can only occur in the presence of cyclic dependency [10], which is
a NS configuration error that occurs when NS records for two zones point to
each other. It is very easy for a registrant to perform that for hundreds or even
thousands of domains in TLDs with open registrations, such as .org.

Let’s use as examples two zones with cyclically dependent records in the
rest of this document. Listing 1 shows a part of zone file of essedarius.net.
Lines #1 and #2 define the authoritative servers for the zone.

Listing 1: DNS Zone file: essedarius.net
1 essedarius.net. 1 IN NS ns1.example.nl.
2 essedarius.net. 1 IN NS ns2.example.nl.

If a user queries for any record under essedarius.net, then the DNS re-
solver will have to query the authoritative server example.nl.

Listing 2 shows the zone file of example.nl. We see that example.nl has as
authoritative servers ns[3,4].essedarius.net. In this case essedarius.net.
is cyclically dependent with example.nl. (essedarius.net ↔ example.nl),
given they point to each other, and there is no way for a resolver to retrieve A
and AAAA records of these cyclically dependent NS records. Consequently,
these domains cannot be resolved.

Listing 2: DNS Zone file: example.nl
1 example.nl. 1 IN NS ns3.essedarius.net.
2 example.nl. 1 IN NS ns4.essedarius.net.

Note that, in the previous example, there is no way for an operator of a
single zone to know if a domain is cyclic dependent or not by simply doing
static analysis, i.e., only looking its own zone files. It is necessary to actively
query the domain to determine that, in order to have a view of other zones.
For that end, we have developed CycleHunter, an open-source tool that can
be used to detect cyclic dependencies (§5).

2.3 Vulnerable Recursive Resolvers

We refer to vulnerable recursive resolvers as resolvers that when encountering
cyclically dependent NS records in their recursive resolution process, they do
at least one of the two (or both):

1. Do not detect the cycle, and start looping non-stop between cyclically
dependent NS records.

2. Do not cache cyclically dependent NS records.

Loop as source of traffic growth: Suppose an user asks a vulnerable recursive
resolver for the A record of essedarius.net . This resolver will ask one of the
authoritative servers of essedarius.net (lines # 1 and 2 in Listing 1) for this
record, and will be answered with lines # 1 and # 2.

That NS response will bring the resolver the authoritative servers of example.nl
(lines #1 and #2 in Listing 2), which will also answer with a NS record that
points back to essedarius.net.

3



If the resolver, at this stage, is oblivious to the cycle, it will simply bounce
back from zone to zone, sending non-stop queries to the authoritative servers
of both parent zones (lines #1 and #2 in both listings). These are the servers,
which, in turn, will experience traffic growth. That is exactly what happened with
.nz, as shown in Figure 1.

In other cases, the vulnerable recursive resolver will time out after making
some number of queries. In this case, while there will not be endless traffic,
there will be an amplification factor that increases traffic generated by the ini-
tial query. (If each name times out after ten attempts and there is a loop of two
names, it may cause a 20× repetition in a single query from a stub resover.)

In our experiments, we have seen resolvers looping non-stop for hours.
Please refer to §3.1 and §5 in [7] for more details.

Giving there may be multiple layers of resolvers between a client and an
authoritative server, it is important for the last resolver in the chain to cache
cyclic dependent records, so in the advent of a looping forwarder querying the
last resolver, non-stop, that would limit the amount of queries that are passed
to the authoritative servers.

2.4 User Queries

Queries by recursive resolvers are triggered from queries from stub resolvers,
which are in turn triggered by user running an application. The user, appli-
cation, and stub resolver can each cause retries that amplify the impact of a
cycle.

Large events like the 2020 .nz event are likely a combination of newly in-
jected external queries combined with amplification from vulnerable recursive
resolvers. Although we have reproduced queries that terminate after amplifi-
cation, and queries that cycle repeatedly, we suspect that the 2020 .nz event
reflects some degree of new external queries.

3 Impact on authoritative servers

Once vulnerable recursive resolvers encounter cyclic dependent records, they
will begin to loop. However, what authoritative servers receive this traffic, that
can ultimately become a DDoS?

It is the parent zone authoritative servers. In our example in Listing 1 and
Listing 2, it will be the .nl and .net authoritative servers that will receive the
extra queries, given the resolvers cannot pass from this level in the recursive
resolution of domains.

For a authoritative server operator, such as TLD operator, the doom’s day
scenario would involve registrants changing their default NS records to cyclic
dependent ones, especially if this is done with hundreds or thousand domains
at once.

We have seen in Figure 1 that the misconfiguration of 2 domains led to a
50% traffic growth on .nz. But it was not the only instance.

After private disclosures (§6), we have been contacted by an anonymous
European ccTLD experienced 10x traffic growth when also two domains were
misconfigured with cyclic dependencies.

4



Figure 2: TsuNAME event at an Anonymous EU-based ccTLD operator.

On a particular day in 2019, around 19:00 UTC, two domains in their zones
were misconfigured with cyclic dependencies. Given these domain names
were particularly popular in the country, it cause the largest surged we have
seen from TsuNAME related events: 10x traffic growth. Figure 2 shows a time-
series of queries (y axis anonymized by the ccTLD operator). It was only fixed
once the ccTLD operator contacted the domain owner, who fixed the situation
on the day after, around 11:00 UTC. Similarly to the .nz event, we see a imme-
diate drop in the traffic after fixing the records.

4 Recommendation for authoritative server opera-
tors

Authoritative servers are the target of the TsuNAME vulnerability. In the case
of Listing 1 and Listing 2, the servers listed in both lines #1 and #2 would be
the ones seeing a surge in traffic, i.e,, the parent zone authoritative servers of the
.nl and .net zones.

Once resolvers start looping, i.e., sending non-stop queries for cyclic depen-
dent domain, which may overwhelm their parent authoritative servers.

To mitigate the risks of TsuNAME-related attacks, we recommend authori-
tative sever operators to detect and remove cyclic dependencies from their zones.
To that end, we provide CycleHunter, an open-source tool that reads zone
files and scrutinize NS records searching for cyclic dependencies. CycleHunter
can be downloaded at https://github.com/SIDN/CycleHunter.

Please note that given that NS records can change at any time, there is no
permanent solution. In other words, if a DNS zone has no cyclically dependent
NS records at time t, it means that this zone is not vulnerable at only that partic-
ular time t. We therefore also recommend that registrars run CycleHunter on
a regular basis, for instance as part of their domain name registration process.

5

https://github.com/SIDN/CycleHunter


5 Recommendations for resolver operators

To mitigate the traffic surge from resolvers to authoritative servers caused by
the TsuNAME vulnerability, resolver operators should guarantee that their re-
solvers (i) do not loop in the presence of cyclic dependencies and (ii) cache the
results of cyclic dependent records.

For example, in the Listing 1 and Listing 2 examples, that would involve
in detecting that these NSes are unresolvable, and caching them – possibly as
SERVFAIL [6]. Then, any subsequent queries to these delegations will notice
that there is no resolvable NS record for this zone, and will be answered as
SERVFAIL from the cache, reducing the volume of queries to authoritative
servers.

You can test your resolver by setting up third-level cyclic dependent zones
and sending queries to your resolver, to determine if starts looping and if cache
the results. We include two tests in Appendix A that you can do with your own
DNS resolvers.

5.1 Evaluated resolvers

We configure a test zone with cyclic dependency and evaluate popular DNS
resolvers: Unbound (v 1.6.7) [8], BIND (v 9.11.3) [5], and KnotDNS (v 5.1.3) [1],
on a VM on AWS EC2 (FRA). We found that none of the start looping in the
presence of cyclic dependent domains, hence are not vulnerable to it.

6 Responsible disclosure and mitigation

We wish to protect authoritative server operators from TsuNAME based at-
tacks. To do that, we have carefully coordinated responsible disclosure to vul-
nerable parties, at least 90 days prior to this public disclosure.

The first party we notified was Google, given Google Public DNS (GDNS) [4]
was responsible for most queries during the .nz event. They have fixed the is-
sue since then. Another party we notified was Cisco OpenDNS [9], which has
also fixed fixed their software too.

Table 1 shows the timeline of notification about TsuNAME. We first choose
to notify first developers and folks that run most vulnerable recucrisve re-
solvers, such as Google. Then, we carried out a private notification section
for DNS-OARC members only, during OARC 34 [2]. This private notifica-
tion, among trusted partners, allowed the community to contribute and pro-
vide feedback, for example, by significantly improving CycleHunter. We are
thankful to all of them.

Acknowledgments

We would like to thank Puneet Sood, Warren Kumari, Brian Dickson, Barry
Greene, Keith Mitchell, Dario Ciccarone, Ralph Weber and the DNS-OARC
community for their feedback and support in handling this vulnerability dis-
closure. We thank the Anonymous European ccTLD operator for kindly shar-
ing their experience and their traffic graph when they experienced a TsuNAME
event (Figure 2).

6



Date Type Group
2021-02-05 Private Disclosure OARC34
2021-02-22 Private Disclosure APTLD
2021-02-23 Private Disclosure CENTR
2021-03-04 Private Disclosure LACTLD

2021-02-18–2021-05-05 Private Disclosure Private
2021-05-06 Public Disclosure OARC35
2021-05-06 Public Disclosure https://tsuname.io

Table 1: TsuNAME disclosure timeline
We will also public disclose TsuNAME during the next OARC 35 [3].

We thank all contributors to CycleHunter on Github: https://github.

com/SIDN/CycleHunter/graphs/contributors

We also thank the Ripe Atlas measurement platform [12, 11], which we used
extensively in the characterization of this vulnerability in [7].

Legal Disclaimer
We the authors use BSD 2-clause license:

THIS DOCUMENT IS PROVIDED ON AN “AS IS”"AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Appendix

A Evaluating your resolvers

To test your resolver software, set up cyclically dependent delegations, as shown
in Listing 1 and Listing 2. We strongly recommend creating third-level do-
main names instead of second-level (e.g., example.nl) given that cyclically
dependent second-level domains will stress authoritative servers of their re-
spective TLDs (§4).

After creating these cyclically dependent delegations, we suggest the fol-
lowing tests:

A.1 Test 1: Loop Detection

1. Clean the cache of your resolver

2. Monitor the traffic between the resolver and the Internet

7

https://indico.dns-oarc.net/event/37/contributions/821/ 
https://indico.dns-oarc.net/event/38/contributions/849/
https://tsuname.io
https://github.com/SIDN/CycleHunter/graphs/contributors
https://github.com/SIDN/CycleHunter/graphs/contributors


3. Send ONE query to your for a domain under the misconfigured delega-
tion.

• Compute how many queries are then sent to the parent authoritative
servers of both misconfigured zones (lines #1 and #2 of Listing 1 and
Listing 2)

• Determine if your resolver loops indefinitely, or if eventually stop
sending queries to the authoritative servers. You may need to mon-
itor for various minutes or hours.

Please notice that the resolver may send a SERVFAIL response to your client,
but it may remain looping, sending non-stop queries to the authoritative servers.

For a reference, you may want to check Unbound’s source code, which in-
cludes various types of cycle/loop detection, as described in their changelog1.

A.2 Test 2: Caching Cyclic Records and Amplification

1. Clean the cache of your resolver

2. Monitor the traffic between the resolver and the Internet

3. Send ONE query to your for a domain under the misconfigured delega-
tion.

4. Then, send this query multiple times every 5 s (or other short interval)

• Compute how many queries are then sent to the parent authoritative
servers of both misconfigured zones (lines #1 and #2 of Listing 1 and
Listing 2)

• Determine if the new, recurrent queries from your client (dig in this
case) cause your resolver to send many more queries to reach the
authoritative servers, or if they are answered from cache.

If new user queries (dig) lead to more queries to the authoritative servers,
you resolver is then vulnerable to TsuNAME.

References

[1] CZ-NIC. Knot dns, January 2021.

[2] Giovane Moura. OARC Members Only Session: Vulnerability
Disclosure (DDoS). https://indico.dns-oarc.net/event/37/
contributions/821/, February 2021.

[3] Giovane Moura. Public Disclosure DNS vulnerability. https:
//indico.dns-oarc.net/event/38/contributions/849/, May
2021.

[4] Google. Public DNS. https://developers.google.com/speed/
public-dns/, November 2020.

1https://github.com/NLnetLabs/unbound/blob/master/doc/Changelog

8

https://indico.dns-oarc.net/event/37/contributions/821/
https://indico.dns-oarc.net/event/37/contributions/821/
https://indico.dns-oarc.net/event/38/contributions/849/
https://indico.dns-oarc.net/event/38/contributions/849/
https://developers.google.com/speed/public-dns/
https://developers.google.com/speed/public-dns/
https://github.com/NLnetLabs/unbound/blob/master/doc/Changelog


[5] ISC . BIND 9 . https://www.isc.org/bind/, January 2021.

[6] P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034, IETF,
November 1987.

[7] Giovane C. M. Moura, Sebastian Castro, John Heidemann, and Wes
Hardaker. tsuNAME: exploiting misconfiguration and vulnerability to
DDoS DNS. Technical Report 2021-01, SIDN Labs. https://tsuname.
io/paper.pdf, May 2021.

[8] NL Netlabs. UNBOUND. https://www.nlnetlabs.nl/projects/
unbound/about/, January 2021.

[9] OpenDNS. Setup Guide: OpenDNS. https://www.opendns.com/,
March 2021.

[10] Vasileios Pappas, Zhiguo Xu, Songwu Lu, Daniel Massey, Andreas Terzis,
and Lixia Zhang. Impact of configuration errors on DNS robustness. SIG-
COMM Comput. Commun. Rev., 34(4):319–330, August 2004.

[11] RIPE NCC Staff. RIPE Atlas: A Global Internet Measurement Network.
Internet Protocol Journal (IPJ), 18(3):2–26, Sep 2015.

[12] RIPE Network Coordination Centre. RIPE Atlas. https://atlas.
ripe.net, 2020.

9

https://www.isc.org/bind/
https://tsuname.io/paper.pdf
https://tsuname.io/paper.pdf
https://www.nlnetlabs.nl/projects/unbound/about/
https://www.nlnetlabs.nl/projects/unbound/about/
https://www.opendns.com/
https://atlas.ripe.net
https://atlas.ripe.net

	Introduction
	The TsuNAME vulnerability
	The .nz event
	Cyclic Dependency
	Vulnerable Recursive Resolvers
	User Queries

	Impact on authoritative servers
	Recommendation for authoritative server operators
	Recommendations for resolver operators
	Evaluated resolvers

	Responsible disclosure and mitigation
	Evaluating your resolvers
	Test 1: Loop Detection
	Test 2: Caching Cyclic Records and Amplification


