
Intelligent REST API Data Fuzzing
Patrice Godefroid
Microsoft Research

USA
pg@microsoft.com

Bo-Yuan Huang∗
Princeton University

USA
byhuang@princeton.edu

Marina Polishchuk
Microsoft Research

USA
marinapo@microsoft.com

ABSTRACT
The cloud runs on REST APIs. In this paper, we study how to in-
telligently generate data payloads embedded in REST API requests
in order to find data-processing bugs in cloud services. We discuss
how to leverage REST API specifications, which, by definition, con-
tain data schemas for API request bodies. We then propose and
evaluate a range of data fuzzing techniques, including structural
schema fuzzing rules, various rule combinations, search heuris-
tics, extracting data values from examples included in REST API
specifications, and learning data values on-the-fly from previous
service responses. After evaluating these techniques, we identify
the top-performing combination and use this algorithm to fuzz sev-
eral Microsoft Azure cloud services. During our experiments, we
found 100s of “Internal Server Error” service crashes, which we
triaged into 17 unique bugs and reported to Azure developers. All
these bugs are reproducible, confirmed, and fixed or in the process
of being fixed.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Correctness; • Networks → Cloud computing.

KEYWORDS
REST APIs, JSON data fuzzing, API data-payload testing, cloud
security and reliability
ACM Reference Format:
Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent
REST API Data Fuzzing. In Proceedings of the 28th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3368089.3409719

1 INTRODUCTION
Cloud computing is exploding. Today, most cloud services, such
as those provided by Amazon Web Services [11] and Microsoft
Azure [26], are programmatically accessed through REST APIs [18],
both by third-party applications [10] and other services [27]. REST
APIs are implemented on top of the HTTP/S protocol and offer
∗The work of this author was mostly done at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409719

a uniform way to manage cloud resources. Cloud service devel-
opers can document their REST APIs using interface-description
languages like Swagger (recently renamed OpenAPI) [35]. A Swag-
ger specification describes how to access a cloud service through
its REST API, including what requests the service can handle, what
responses may be received, and the request and response formats.

REST APIs can be very complex. For instance, REST APIs of
Azure services are described in millions of lines of Swagger code
publicly available on GitHub [25]. To master this complexity, new
tools are needed to prevent expensive outages and SLA violations
due to service bugs [24]. Tools for automatically testing cloud ser-
vices are still in their infancy. Several fuzzing1 tools for REST APIs
fuzz and replay manually-defined or previously-captured API traffic
to try finding bugs [12, 13, 16, 29, 37]. Perhaps the most advanced
(and recent) tool in this space is RESTler, which performs stateful
REST API fuzzing [15]. Given a Swagger specification, RESTler au-
tomatically generates sequences of requests in order to reach deeper
service states and find more bugs. Without requiring pre-recorded
API traffic, RESTler can find bugs such as unhandled exceptions
(service crashes), which are detected as Internal Server Error
responses.

The data payloads sent in REST API request bodies can be very
complex as well. As an example, the Azure DNS service [8] maps
domain names to IP addresses following mapping rules defined by
users; these rules are specified using JSON data with variable-size
arrays, strings, and numerical values that are sent in bodies of REST
API requests (see Section 2). What happens when such arrays are
re-ordered, or swapped, or made very large, or strings are replaced
by numerical values, or parameters are dropped or duplicated? Can
the DNS service handle all these cases?

In this paper, we study how to intelligently generate data pay-
loads embedded in REST API requests to find data processing bugs
in cloud services. By intelligently, we mean fuzzing techniques that
can find bugs even with a limited testing budget. For instance, sim-
ple blackbox random fuzzing [19] works well for binary formats but
is ineffective for structured JSON data because the probability of
generating new interesting inputs is extremely low [34]. Symbolic-
execution-based whitebox fuzzing [23] or simpler code-coverage-
guided greybox fuzzing [38] are not applicable because the cloud
service under test is a remote distributed black box. Support for
fuzzing complex REST API data payloads is also very limited in
existing REST API fuzzing tools. For instance, RESTler can only
replace body values by other values of the same type selected from
a user-defined dictionary of fixed values [15].

This paper aims to fill this void. Specifically, we explore how
to leverage REST API specifications, which, by definition, contain

1Fuzzing means automatic test generation and execution with the goal of finding
security vulnerabilities.

https://doi.org/10.1145/3368089.3409719
https://doi.org/10.1145/3368089.3409719

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk

1 {
2 "etag": "string",
3 "properties": {
4 "registrationVirtualNetworks": [
5 { "id": "string" }
6],
7 "maxNumberOfRecordSets": 0,
8 "numberOfRecordSets": 0,
9 "nameServers": ["string"],

10 "zoneType": {"enum": ["Public","Private"]},
11 "registrationVirtualNetworks": [
12 { "id": "string" }
13],
14 "resolutionVirtualNetworks": [
15 { "id": "string" }
16]
17 },
18 "id": "string",
19 "name": "string",
20 "type": "string",
21 "location": "string",
22 "tags": { "string": "string" }
23 }

Figure 1: Example of REST API JSON body schema.

data schemas for API request bodies. We then propose and sys-
tematically evaluate a wide range of data fuzzing techniques. We
proceed in several stages to evaluate the benefit that each tech-
nique provides. We start with simple structural schema fuzzing
rules, which modify the tree-structure or data types of JSON data
(Section 3). Then we study combinations of individual fuzzing rules
to identify synergies or redundancies among them (Section 4); be-
cause rule combinations generate so much fuzzed data, we also
evaluate several search heuristics to deal with this combinatorial
explosion. Next, we propose and evaluate two new techniques for
generating specific concrete data values that typically need to be
provided throughout a body schema: we discuss how to extract
data values from examples included in REST API specifications, and
how to learn data values on-the-fly from previous service responses
(Section 5).

After evaluating all these techniques, we identify the best com-
bination and use this algorithm to fuzz several Microsoft Azure
cloud services (Section 6). During our experiments, we found 100s
of “Internal Server Error” service crashes, which we triaged
into 17 unique bugs and reported to Azure developers. All these
bugs are reproducible, confirmed, and fixed or in the process of
being fixed. We discuss related work in Section 7 and conclude in
Section 8.

2 BACKGROUND AND MOTIVATION
Most cloud services are programmatically accessed through REST
APIs [10, 27]. Swagger, also known as OpenAPI, is a popular specifi-
cation language to define REST APIs [35]. For instance, most public
Microsoft Azure services have Swagger API specifications available
on GitHub [25]. A Swagger specification describes how client re-
quests can create (PUT/POST), monitor (GET), update (PUT/POST/PATCH),
and delete (DELETE) cloud resources. Cloud resource identifiers are
specified in the path or the body of the request.

Typically, PUT, POST, and PATCH API requests require additional
input-parameter values to be included in the request body. Such
parameter values and their format are described in a JSON data

schema that is part of the API specification. A combination of con-
crete input-parameter values included in a request body is called a
body payload.

As an example, Figure 1 shows the schema for the body of the
request PUT DNS-Zone that creates a new DNS zone in Azure (see
https://github.com/Azure/azure-rest-api-specs under the directory
specification/dns/). This schema can be viewed as a tree with 22
nodes. For instance, the root node (on line 1) is an object, which has 7
children. The first child is named etag (line 2) and is of type string.
The second child is an object named properties (line 3). This
object has itself a child named registrationVirtualNetworks
(line 4) of type array (denoted with []), and so on. In line 10, the
node zoneType is of enum type and takes any value among the
specified array of constants (here either the string constant Public
or Private). In line 22, tags is an object which can have key-value
pairs as children where both the key and value are of type string.

Because this schema includes objects, arrays, and strings of (a
priori) unbounded sizes, as well as numerical values, there are in-
finitely (or astronomically) many ways to generate concrete input-
parameter values, i.e., payloads, satisfying the schema. Worse, there
are even more ways to generate body payloads violating the schema,
which may also be worth testing in order to find bugs in the code
processing API requests. Also, REST API data schemas are some-
times much larger than this simple example.

Given a REST API data schema, what are the most effective test-
generation techniques to fuzz the body of REST API requests? The
purpose of this paper is to address this question.

Many API requests with non-empty bodies are used to create
or update service resources that can be reached only after creat-
ing parent resources. For instance, the Azure DNS service con-
sists of 13 request types, and only 4 of these have non-empty bod-
ies: a PUT request to create a DNS-Zone and whose body schema
of 22 nodes is shown in Figure 1, a PATCH request to update a
DNS-Zone with a schema of only 2 nodes, a PUT request to create a
DNS-Record-Set with a schema of 65 nodes, and a PATCH request
to update a DNS-Record-Set with a schema of 65 nodes. A valid
DNS-Zone identifier must be provided in the path of a PUT request
that creates a DNS-Record-Set, because a DNS-Record-Set is a
child resource of a parent DNS-Zone.

In order to reach deeper service states where child resources
can be created, hence increasing the number of requests with non-
empty bodies we can fuzz, we build upon recent work on stateful
REST API fuzzing [15]. Specifically, we leverage the tool RESTler [15],
which performs an initial static analysis of a Swagger specification
to infer the parent-child dependencies and generate sequences of
requests (instead of single requests) to reach such deeper states. A
test suite generated by RESTler attempts to cover as much as possi-
ble of the input Swagger specification, although full specification
coverage is not guaranteed. While testing a service, RESTler reports
all Internal Server Error responses (HTTP status code 500).
These are unhandled exceptions (service crashes) that may severely
damage service health.

In this work, we investigate how to extend stateful REST API
fuzzing in general, and RESTler in particular, by intelligently fuzzing
RESTAPI data (body payloads) to find evenmore Internal Server
Error bugs in service code that processes complex data.

https://github.com/Azure/azure-rest-api-specs

Intelligent REST API Data Fuzzing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

1 // example schema
2 // nodes
3 V = { root,
4 tag, properties,
5 id, time
6 }
7 // edges
8 E = { (root, tag),
9 (root, properties),
10 (properties, id),
11 (properties, time)
12 }
13 // type
14 T(root) = object
15 T(tag) = string
16 T(properties) = object
17 T(id) = string
18 T(time) = integer

1 // example payload
2 {
3 "tag":"global",
4 "properties": {
5 "id":"abcd",
6 "time":3600
7 }
8 }

root

tag properties

id time

• object

• string

• integer

Figure 2: Example of schema and payload.

In the next Sections 3 to 5, we propose various JSON payload
data fuzzing techniques, and we evaluate their effectiveness using
the Azure DNS service as a benchmark. On the one hand, the DNS
service is a real, non-trivial (with body schemas up to 65 nodes),
widely-used Azure service. On the other hand, it is small enough
(13 request types) to run many experiments quickly (in hours) and
simple enough to allow non-experts to analyze results.

3 SCHEMA FUZZING
In this section, we define schema fuzzing rules that take as input a
body schema and return a set of fuzzed-schemas.

3.1 Schema and Fuzzed-Schema
A request body schema is encoded in the JSON format. It can be
viewed as a tree in which each node corresponds to a property field
and is labeled with a type. Formally, a schema is defined as a tree-
structure G = (V , E, Γ,T), where V is a set of nodes, E = {(p,q) |
p,q ∈ V } is a set of edges, Γ = {string, integer,Boolean, object, array}
is a set of supported types, and T : V → Γ is a type-labeling func-
tion mapping each node to one type. A fuzzed-schema is defined
similarly.

Figure 2 shows an example of schemawith five nodes, an example
of a concrete JSON payload satisfying the schema, and a pictorial
representation of the schema tree structure with its labeled types.

3.2 Schema Fuzzing Rules
Given a schema G , a schema fuzzing rule modifies its tree structure
(V and E) or its type-labeling function (T) to generate a set of fuzzed-
schemas. Moreover, a schema fuzzing rule can be applied once or
multiple times to a given schema.

3.2.1 Node Fuzzing Rules. A node fuzzing rule defines how to mod-
ify a node in a schema. In our schema fuzzer, we implemented four
node fuzzing rules: (1) Drop (2) Select (3) Duplicate, and (4) Type.

Drop. Given an internal noden ∈ V in the schemaG = (V , E, Γ,T),
the node fuzzing rule Drop removes one child node c of node n,
where (n, c) ∈ E. Other child nodes remain unchanged.

(a) original schema (b) Single

(c) Path (d) All

Figure 3: The original schema and the fuzzed-schemas gener-
ated by applying the node fuzzing rule Drop using different
tree fuzzing rules (Single, Path, and All).

Select. Given an internal noden ∈ V in the schemaG = (V , E, Γ,T),
the node fuzzing rule Select keeps only one child node c of node
n, where (n, c) ∈ E. All other child nodes of n are removed.

Duplicate. Given an internal node n ∈ V in the schema G =
(V , E, Γ,T), the node fuzzing rule Duplicate adds a new child node
r to n by copying an existing child c of n. The descendant nodes of
c (i.e., the subtrees) are also copied.

Type. The node fuzzing rule Type changes the labeled type of
a node n ∈ V in a schema G = (V , E, Γ,T) and generates a fuzzed-
schema G ′ = (V , E, Γ,T ′) where T ′(n) , T (n). Note that changing
the type of an internal node may have side effects on the tree
structure (e.g., changing an array to a string removes all the child
nodes). In contrast, changing the type of a leaf node to object or
array preserves the tree structure, because those objects or arrays
are empty.

3.2.2 Tree Fuzzing Rules. A tree fuzzing rule defines how to apply
a node fuzzing rule over a schema tree to produce a new fuzzed-
schema tree. In our fuzzer, we implemented three different tree
fuzzing rules: (1) Single (2) Path, and (3) All.

Single. Given a node fuzzing rule and a schema, the tree fuzzing
rule Single applies the node fuzzing rule on one single node while
keeping all other nodes unchanged. The rule Single applied ex-
haustively on the entire schema tree yields the smallest set of fuzzed-
schema variants (linear in the original schema size).

Path. Given a node fuzzing rule and a schema, the tree fuzzing
rule Path selects a path in the schema tree, then selects a set of
nodes on that path, and finally applies the node fuzzing rule to every
node in that set. The tree fuzzing rule explores more structural and
type variants than Single does. However, multiple sibling nodes
will never be modified.

All. Given a node fuzzing rule and a schema, the tree fuzzing rule
All selects a set of nodes in the schema tree, then applies the node
fuzzing rule to every node in that set. This rule generalizes both
Single and Path, but can generate exponentially-many fuzzed-
schema variants.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk

Figure 3 (a) shows an example schema, a tree of eight nodes with
labeled types. Given this schema, Figure 3 (b), (c), and (d) shows
one fuzzed-schema that can be generated by applying Drop using
Single, Path, and All, respectively. The node fuzzing rule Drop is
applied to the dash-circled (highlighted) nodes.

3.3 Experimental Evaluation
To evaluate the effectiveness of these node and tree fuzzing rules,
we performed experiments with various fuzzing rule combinations
using the Azure DNS service as a target.

3.3.1 Evaluation Metric. The cloud services we aim to fuzz are
black boxes to us: we cannot instrument their code to measure code
coverage. In order to evaluate fuzzing effectiveness in a consistent
way, not just by counting bugs found (since bugs are rather rare), we
introduce a new coverage metric for cloud services tested through
REST APIs: the response error type coverage metric.

Error Code. When a service fails to process a request, it returns
an error code to notify the client of this failure. Minimally, every
REST API request returns an HTTP status code, which is in the
40x range when the failure is triggered by an invalid yet handled
request, or in the 50x range for unhandled conditions or generic
failures to process the request. In addition, a service may define its
own finer-grained error code that includes domain-specific informa-
tion. For the DNS service example, a response with the error code
DomainNameLabelMissing may be received if the request body
payload does not provide the required labeling.

Error Message. In addition to an error code, the response for a
failed request typically also includes an error message. This message
is valuable in that it further describes how the payload is being
processed, especially when the same error code is used for many
invalid requests. For example, the error messages "The resource
record is missing field ’target’" and "Record type SRV is
not supported for referencing resource type ’dnsZones’"
both return the same error code BadRequest. These two messages
provide additional context for the errors, which cannot be distin-
guished by using the error code alone.

Error Type. We define an error type as a pair of error code and
error message. (Error messages are sanitized by removing runtime
specific information, such as timestamps, session ids, GUIDs, etc.)
The number of distinct error types is used as the effectiveness
metric in our experiments: we will favor fuzzing techniques that
maximize error type coverage.

3.3.2 Experiment Settings. We implemented our body schema fuzzer
as an extension of RESTler. In all the experiments reported in this
paper, we run RESTler under its “test mode” where it attempts to
generate one valid response for every request type [15]. When
RESTler tests a request type for the first time, our new schema
fuzzer is called to generate variants of the body payload of that
request. Thus, our payload schema fuzzer is called once for each
request type with a non-empty body schema.

We experimented on all 12 combinations (4 node fuzzing rules
and 3 tree fuzzing rules) under a maximum bound of 1,000 fuzzed-
schemas per request type. Thus, if any combination generates more
than 1,000 fuzzed-schemas, only the first 1,000 will be tested. (We

0 20 40 60 80 100 120

Sc
he

m
a

Fu
zz

in
g

Ru
le

s

Error Types (each point represents a unique error type)

Drop (Single) (total: 6)

Drop (Path) (total: 8)

Drop (All) (total: 6)

Select (Single) (total: 11)

Select (Path) (total: 1 9)

Select (All) (total: 12)

Type (Single) (total: 61)

Type (Path) (total: 61)

Type (All) (total: 18)

Duplicate (Single) (total: 47)

Duplicate (Path) (total: 40)

Duplicate (All) (total: 16)

Figure 4: Error type coverage for each schema fuzzing rule.

systematically enumerate possible fuzzed-schemas, and the process
is deterministic.) Since DNS has 4 request types with non-empty
payloads, at most 4,000 fuzzed-schemas were tested per node/tree
fuzzing rule pairs.

Given a fuzzed-schema, a JSON payload is rendered by filling in
concrete values based on the labeled type of each leaf node. In this
experiment, we use "fuzzstring", 0, false, {}, and [] for leaf
nodes labeled with type string, integer, Boolean, object, and array,
respectively. The value rendering is only based on the labeled types.
(We will discuss other value rendering strategies in Section 5.)

3.3.3 Experiment Results. Figure 4 shows the error types discov-
ered by the 12 schema fuzzing rules (node/tree fuzzing rule pairs).
Each column represents a unique error type, whereas each row re-
ports which error types were found by the specific schema fuzzing
rule. The total count for each rule is shown in the legend.

Drop and Select. For node fuzzing rules Drop and Select, using
the Path tree fuzzing rule covers more distinct error types than us-
ing other tree fuzzing rules. Both Drop and Selectmodify a schema
by removing nodes from the original tree. A removed node can be
either a required property, or optional and used only under certain
conditions (e.g., in the absence of another node). Therefore, apply-
ing such structural modifications on different nodes (i.e., Path and
All) is effective. However, since All generates an exponential num-
ber of fuzzed-schemas and the fuzzing budget is limited, it ends
up testing many redundant combinations before quickly running
out of budget. In contrast, Path modifies the nodes along a single
path, restricting the fuzzing combinations of descendants of sibling
nodes. Since child nodes of sibling nodes are usually independent,
Path avoids generating many useless combinations of independent
sub-trees. Therefore, the tree fuzzing rule Path works best for node
fuzzing rules Drop and Select when the budget is limited.

Type. The node fuzzing rule Typemodifies a schema by changing
the labeled types of its nodes. As shown in Figure 4, there is some
overlap between the error types triggered by Drop, Select, and
Type. This is due to the structural side effects of the node fuzzing
rule Type, as discussed in Section 3.2.1. In addition to structural
side effects, Type may also introduce deserialization errors caused
by type mismatches, which often terminate the payload parsing
process immediately. This makes it less effective to apply the node
fuzzing rule Type on multiple nodes at a time (i.e., Path and All).

Intelligent REST API Data Fuzzing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

By analyzing the results further (data not shown here), we also see
that changing the types of internal nodes is as effective as changing
the types of leaf nodes. Further, when changing the labeled type of
a node, the new type matters. For example, changing a string-typed
node to an integer or an object can trigger different error types.

Duplicate. The node fuzzing rule Duplicate, in contrast to Drop and
Select, modifies a schema by adding new nodes to the original
tree. This can introduce the duplicate-keys error when inserting a
duplicate key-value pair to an object-typed node. In other words,
the payloads rendered from such fuzzed-schemas will violate the
JSON format, and thus result in deserialization errors. Therefore,
applying this kind of modification on multiple nodes at a time (i.e.,
Path and All) does not provide much benefit, although it consumes
a great portion of the limited budget.

Rules are complementary. Although the node fuzzing rules Drop and
Select discover fewer error types, there are some error types that
cannot be triggered by Type or Duplicate. They are usually tree
structure related, for example, the error type with the error code
"LocationRequired" is only discovered by Drop and Select. Sim-
ilarly, there are deserialization-related error types that are uniquely
triggered by either Type or Duplicate. Error types covered by
multiple fuzzing rules are mostly due to bad value rendering (e.g.,
"Expect fully qualified resource Id that start with
’...’") rather than due to a fuzzed structure or type.

3.3.4 Conclusion.

• The tree fuzzing rule Single works best for node fuzzing
rules that trigger deserialization errors, such as Type and
Duplicate.

• The tree fuzzing rule Path works best for node fuzzing rules
that modify the tree structure without introducing deserial-
ization errors, such as Drop and Select.

• Different node fuzzing rules are able to discover different
kinds of error types and are thus complementary.

All the above observations hold for every single DNS request type
with a non-empty body schema.

From these conclusions, we select 4 schema fuzzing rules as
the building blocks of our payload fuzzer: Drop with Path (de-
noted DROP), Select with Path (denoted SELECT), Duplicate with
Single (denoted DUPLICATE), and Typewith Single (denoted TYPE).

4 COMBINING SCHEMA FUZZING RULES
In this section, we combinemultiple schema fuzzing rules in pipelines
and evaluate the effectiveness of such combinations.

4.1 Pipelining Schema Fuzzing Rules
Since the 4 schema fuzzing rules DROP, SELECT, DUPLICATE, and
TYPE are complementary, perhaps combining these could trigger
even more error types in the service under test. To explore this idea
further, we combine schema fuzzing rules in a sequential pipeline:
one fuzzing rule is applied to an initial body schema and gener-
ates a set of fuzzed-schemas, then a second fuzzing rule is ap-
plied to all these fuzzed-schemas and generates even more fuzzed-
schemas, and so on. For example, consider a two-stage pipeline, de-
noted as DROP-TYPE, with its first stage associated with the schema

fuzzing rule DROP and the second stage associated with TYPE. It first
takes an original schemaG and generates a set of fuzzed-schemas
DROP(G) = {G1,G2, . . . ,Gn } by applying the schema fuzzing rule
DROP. It then applies TYPE to every Gi ∈ DROP(G), to get the final
set of fuzzed-schemas:

DROP-TYPE(G) =
⋃

Gi ∈DROP(G)

TYPE(Gi)

4.1.1 Search Heuristics. Since pipelining schema fuzzing rules re-
sults in enormous numbers of new fuzzed-schemas but fuzzing
budgets are limited, we propose and evaluate 3 heuristics to select
fuzzed-schemas generated by pipelining fuzzing rules: (1) Depth–
First (DF), (2) Breadth-First (BF), and (3) Random (RD).

Depth-First (DF). Given a maximum boundM , the search heuris-
tic DF generates fuzzed-schemas in depth-first order with respect
to the pipeline stages and selects the firstM fuzzed-schemas. For
example, with DF, a two-stage pipeline DROP-TYPE takes an initial in-
put schemaG , generates a first fuzzed-schemaG1 ∈ DROP(G), and
then generates the set TYPE(G1) of fuzzed-schemas. It then contin-
ues generating fuzzed-schemas TYPE(Gi) for otherGi in DROP(G)
(one by one) until the bound M is reached. In other words, the
search heuristic DF prioritizes more fuzzing in the later stages than
in the earlier stages.

Breadth-First (BF). In contrast to DF, the search heuristic BF pri-
oritizes fuzzing more in the earlier stages by generating fuzzed-
schemas in breadth-first order. For example, with BF, a two-stage
pipeline DROP-TYPE taking as input an initial schema G first gener-
ates all fuzzed-schemas Gi in DROP(G), then it will generate the
fuzzed-schemas in TYPE(Gi) for some Gi ∈ DROP(G), and so on
up to the given boundM .

Random (RD). While DF and BF prioritize fuzzing in either the
later or earlier pipeline stages, respectively, the search heuristics
RD uses a random search order that does not favor specific stages.
For example, with RD and some random seed, a two-stage pipeline
DROP-TYPE taking as input an initial schemaG first generates some
fuzzed-schemaG1 ∈ DROP(G), then generates some fuzzed-schema
G2 ∈ TYPE(G1), then generates some fuzzed-schemaG ′

1 ∈ DROP(G),
then generates some fuzzed-schemaG ′

2 ∈ TYPE(G ′
1), and so on until

the given boundM is reached.

4.2 Experiments
To study the effectiveness of combining schema fuzzing rules as
a pipeline, we compare various rule combinations under different
search heuristics.

4.2.1 Experiment Settings. Similar to the experiments of Section 3.3,
we fuzz the Azure DNS service. Each schema fuzzing rule pipeline
(regardless of the search heuristic) is bounded by a maximum num-
ber of 1,000 fuzzed-schemas per request type. For value rendering,
we use the same type-value mapping as in Section 3.3. We compare
different rule combinations and search heuristics based on the error
types obtained from responses.

Rule Combination. Based on the results in Section 3.3, we group
the four schema fuzzing rules into three groups: (1) DROP and
SELECT that discover structure related errors, (2) TYPE that triggers

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk

0 50 100 150

Sc
he

m
a

Fu
zz

in
g

Ru
le

 P
ip

el
in

es

Error Types (each point represents a unique error type)

DROP (total: 9)

SELECT (total: 18)

DROP-SELECT (total: 22)

SELECT-DROP (total: 13)

TYPE (total: 56)

TYPE-TYPE (total: 65)

DUPLICATE (total: 45)

DUPLICATE-DUPLICATE (total: 45)

TYPE-DROP (total : 41)

TYPE-SELECT (total: 59)

DROP-TYPE (total : 69)

SELECT-TYPE (total: 85)

DROP-SELECT-TYPE (total: 82)

SELECT-DROP-TYPE (total: 72)

DUPLICATE-DROP (total : 51)

DUPLICATE-SELECT (total: 61)

DROP-DUPLICATE (total : 48)

SELECT-DUPLICATE (total: 50)

DROP-SELECT-DUPLICATE (total: 50)

SELECT-DROP-DUPLICATE (total: 49)

DUPLICATE-TYPE (total: 97)

TYPE-DUPLICATE (total: 73)

SELECT-DROP-DUPLICATE-TYPE
(total: 120)

Figure 5: Error type coverage for each schema fuzzing rule
pipeline (search heuristic: RD, random seed: 0).

deserialization errors due to typemismatches, and (3) DUPLICATE that
discovers deserialization errors triggered by malformed JSON re-
quest payloads (duplicated keys). The three schema fuzzing rule
groups tend to have disjoint error type coverage. In this experiment,
we implemented 23 schema fuzzing rule pipelines to cover differ-
ent combinations of the three groups. For example, we have two
pipelines (TYPE-DUPLICATE and DUPLICATE-TYPE) for combining
the second and third groups.

Search Heuristic. To compare how the search heuristics affect
the schema fuzzing rule pipelines given a limited budget, we ran
all the 23 pipelines using DF, BF, and RD. Experiments with RD are
repeated five times using five different random seeds (0, 1, 2, 3, and
4). Each pipeline will thus be evaluated 7 times in total. (The only
source of randomness is in RD with a random seed, whereas DF and
BF are deterministic.)

4.2.2 Experiment Results.

Rule Combination. Figure 5 compares the error type coverage
of each schema fuzzing rule pipeline when using the RD search
heuristic with a random seed 0. It includes the results of all four DNS
request types with non-empty body schemas. Pipelines combining
DROP, SELECT, and TYPE are marked in squares. Pipelines combining

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

Er

ro
r T

yp
es

Tested Fuzzed-schemas

(a) PUT DNS-Zone

DF

BF

RD

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900 1000

Er

ro
r T

yp
es

Tested Fuzzed-schemas

(b) PUT DNS-Record-Set

DF

BF

RD

Figure 6: The growth trends of the number of error types dis-
covered over the number of tested fuzzed-schemas (schema
fuzzing rule pipeline: SELECT-DROP-DUPLICATE-TYPE).

DROP, SELECT, and DUPLICATE are marked in diamonds. Pipelines
combining TYPE and DUPLICATE are marked in crosses. The pipeline
that combines all the three groups (i.e., SELECT-DROP-DUPLICATE-
TYPE) is marked in triangles. As a baseline, pipelines that do not
combine multiple groups are marked in circles.

We can observe the following. Combining schema fuzzing rules
DROP, SELECT, and TYPE as a pipeline is beneficial, in that it helps
discover new error types that are not triggered by DROP, SELECT, or
TYPE alone. Furthermore, based on a finer-grained analysis of the
results, having DROP or SELECT at stages earlier than TYPE usually
has a better error type coverage than the opposite. On the other
hand, combining DUPLICATE with other schema fuzzing rules does
not provide significant improvements: although the total number
of covered error types is higher, the coverage is mostly the union
of the individual ones. Note that the above observations hold for all
7 runs with different search heuristics, not only just the one using
RD with a random seed 0.

Search Heuristic. Figure 6 compares how the total number of
covered error types grows as additional fuzzed-schemas are tested,
using different search heuristics. These results are obtained by ap-
plying the pipeline SELECT-DROP-DUPLICATE-TYPE to the requests
PUT DNS-Zone and PUT DNS-Record-Set, shown in parts (a) and
(b), respectively. The dashed (blue) and dotted (orange) lines corre-
spond to using DF and BF, respectively, while the gray line shows

Intelligent REST API Data Fuzzing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

the average of all 5 runs using RD. The gray bars show the variation
ranges among the 5 runs using different random seeds.

From these experiment results, we see that using RD, regardless
of the random seed used, provides a more stable growth rate. This is
desirable and important when only a subset of the fuzzed-schemas
(the first few generated) can be tested given a limited fuzzing budget.
Remarkably, besides the two configurations (a) and (b) shown in
Figure 6, we observed (data not shown here) similar conclusions
for all experimented schema fuzzing rule pipelines and for all DNS
request types with non-empty body schemas. This indicates that the
search heuristic RD is effective regardless of the schema structure.

4.2.3 Conclusion.

• Combining schema fuzzing rules DROP, SELECT, and TYPE as a
pipeline is helpful, especiallywhen having DROP and SELECT be-
fore TYPE.

• Combining the schema fuzzing rule DUPLICATE with other
rules does not provide significant benefit in covering new
error types.

• The RD search heuristic provides a more stable growth rate in
covering unique error types, and is therefore more favorable
when the budget is limited.

All of the above conclusions were observed for all DNS request
types with a non-empty body schema.

5 DATA VALUE RENDERING
We now discuss several data value rendering strategies, i.e., how
we render fuzzed-schemas with concrete values.

5.1 Challenges in Value Rendering
As described in Section 3.1, a body (fuzzed-)schema defines an
overall tree structure and labeled types. Every leaf node represents
a property field that needs to be rendered with a concrete value
to form a complete JSON payload. Unfortunately, this rendering
process is non-trivial and may require some domain knowledge of
the service under test. For instance, a specific service request with a
string-typed node location might accept the value "global" but
not "us" or "europe", even though all of these are syntactically-
valid string-typed values and, moreover, may be accepted in other
contexts for location. In practice, many requests end up being
rejected due to a single specific invalid value rendering of one single
node in their body payload.

Figure 7 compares how often each error type is triggered during
one of the experiments of Section 4.2 (the one with the schema
fuzzing rule pipeline DROP-SELECT-TYPE). Each partition corresponds
to a unique error type, showing the percentage of tests (over all
tests) that trigger that error type. As the figure shows, the top-5
most frequent error types consume more than 70% of the total
fuzzing budget. Based on the error messages, all these error types
are due to invalid value renderings, such as rendering the node id
with value "fuzzstring". In other words, regardless of what the
tree structures and labeled types of these fuzzed-schemas are, the
service under test rejects these payloads due to a specific invalid
value rendering of one single node (e.g., node id).

This value rendering barrier can be broken down into the fol-
lowing root causes.

51.90%

7.75%

5.68%

2.66%

2.22%

Error code:
InvalidLinkedPropertyId

Error message:
Property id 'fuzzstring' at path
'properties.targetResource.id'
is invalid. Expect fully qualified
resource Id that start with
'/subscriptions/{subscriptionId}
' or '/providers/{…}/’.

Cause: Invalid value rendering

Figure 7: Percentage of tests triggering each error type
(schema fuzzing rule pipeline: DROP-SELECT-TYPE).

• Lack of client-specific information, such as subscription
ID and resource group name.

• Lack of domain-specific information, for example, only
"local" and "global" are valid location values, and a time-
out value can only be a positive integer smaller than 3,600.

• Lack of run-time dependent information, such as the
name of a resource dynamically created by a previous re-
quest.

5.2 Value Rendering Strategies
Given a body schema, RESTler can only replace body values by other
values of the same type selected from a user-defined dictionary of
values [15]. Unfortunately, this simple strategy is insufficient to
address the above challenges.We now discuss several new value ren-
dering strategies that significantly extend the RESTler functionality
and effectiveness for dealing with body payloads.

5.2.1 Static Type-Value Mapping. The simplest way of assigning a
concrete value to a leaf node in a fuzzed-schema is to have a type-
value mapping, which maps each type to a single value. In our body
schema fuzzer, we use the same mapping as discussed in Section 3.3,
namely "fuzzstring", 0, false, {}, and [] for leaf nodes labeled
with type string, integer, Boolean, object, and array, respectively.
This simple strategy can be used by default, as a baseline, but it
does not address the lack of either client-specific, domain-specific,
or run-time dependent information.

5.2.2 Examples from the Swagger Specification. As discussed in
Section 2, a Swagger specificationmay contain examples of concrete
JSON payloads. These examples, if present, are useful for getting
concrete values for nodes, especially those that require domain-
specific information.

However, examples do not help discover client-specific and run-
time dependent values. Moreover, the provided examples usually
cover only a subset of nodes (e.g., the required property fields) and
leave the rest unspecified.

5.2.3 Learning from Responses. The response to a valid request
may contain information on the service state, as opposed to an error
message when the request is invalid. For example, the response to a

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk

1 {
2 "name":"object-1234-abcd",
3 "properties": {
4 "type":"Public",
5 "numberOfTags":2,
6 "maxNumberOfTags":5000
7 },
8 "location":"global",
9 "id":"/subscriptions/subid/resourceGroup/..."

10 }

Figure 8: Example response payload of a successful request.

successful PUT request may contain the identification of the newly
created resource, i.e., run-time dependent information. Similarly,
the responses to successful GET and PATCH requests may return
details of the target resources. Unlike the request examples provided
in a Swagger specification (which is based on the body schema),
the responses may have properties not declared in the body of the
request. Often, the response schema is actually similar to the request
body schema, which makes it possible to re-use response values
for some parameters in the body of future requests. In other words,
learning from responses may reveal the context of the current
client-service interaction and potentially provides client-specific,
domain-specific, and run-time dependent information.

Matching values in responses. The payload body of a response is
represented as a JSON object, like the example provided in Figure 8.
We extract the value of each leaf node in the response payload
body and tag it with its path in the JSON hierarchy. For instance,
"object-1234-abcd" and "Public"will be tagged with name and
properties.type, respectively. We collect this pool of tagged values
on-the-fly by analyzing responses, and keep only the most recent
value for each tag. These values are then used as candidate values
when rendering a fuzzed-schema.

In selecting a concrete value for a node, we use pattern matching
to compare the tags of candidate values to the node path in the
fuzzed-schema tree structure. Two levels of precision are considered:
(1) conservative and (2) aggressive. When in conservative mode,
a candidate value is chosen for a node n only if its tag exactly
matches the node path of n in the fuzzed-schema. For the example
in Figure 8, given a node ntype in the fuzzed-schema, we select the
candidate value "Public" for it only if its parent is nproper t ies and
there are no other parents. On the other hand, under aggressive
mode, we only compare the last level (leaf) in the hierarchy. For the
example in Figure 8, as long as a candidate value has a tag suffixed
with type, it will be chosen for the node ntype , regardless of the
parent nodes.

5.2.4 Supported Value Rendering Strategies. Following the previous
discussion, we implemented 6 different value rendering strategies.

(1) Baseline (BAS): Select a value for a node using only the
type-value mapping.

(2) Examples only (EXM): Select a value for a node by using
the examples; use the type-value mapping if no example is
available.

(3) Responses only (conservative) (CON): Select a value for
a node using the responses in conservative mode; use the
type-value mapping if no candidate value is available.

0 20 40 60 80 100 120 140 160 180

Va
lu

e
Re

nd
er

in
g

St
ra

te
gi

es

Error Types (each point represents a unique error type)

BAS (total: 125)

EXM (total: 132)

CON (total: 135)

CON + EXM (total: 142)

AGG (total: 155)

AGG + EXM (total: 154)

Figure 9: Error type coverage for each value rendering strat-
egy (pipelines: DUPLICATE and DROP-SELECT-TYPE).

(4) Responses only (aggressive) (AGG): Select a value for a
node using the responses in aggressive mode; use the type-
value mapping if no candidate value is available.

(5) Responses (conservative) and examples (CON+EXM): Se-
lect a value for a node using the responses in conservative
mode; use examples if no candidate value is available; other-
wise, use the type-value mapping.

(6) Responses (aggressive) and examples (AGG+EXM): Select
a value for a node using the responses in aggressive mode;
use examples if no candidate value is available; otherwise,
use the type-value mapping.

5.3 Experiments
5.3.1 Experiment Settings. We now evaluate those 6 different value
rendering strategies. Similar to the experiments of Section 4.2, we
use the Azure DNS service as a fuzzing target. Following the results
of Section 4, we select the two “best” schema fuzzing rule pipelines
to generate a set of fuzzed-schemas: DUPLICATEand DROP-SELECT-
TYPE. Each pipeline is bounded by a maximum number of 1,000
fuzzed-schemas per request type, and uses the RD search heuristic
with a random seed 0. Based on the same set of fuzzed-schemas,
we compare all the 6 value rendering strategies described in Sec-
tion 5.2.4. In other words, we fuzz Azure DNS 6 times using the
same set of fuzzed-schemas but render them using different value
rendering strategies. All 6 execute the same number of tests. As
before, we evaluate fuzzing effectiveness using the covered error
types obtained from the responses received.

5.3.2 Experiment Results. Figure 9 shows the error types covered
by each of the 6 value rendering strategies. The results include all
4 DNS request types with non-empty body schemas.

Compared to the baseline (BAS), both using the examples from
the Swagger specification (EXM) and matching the values in the
responses (CON) are helpful in covering more error types. For exam-
ple, an error type with an error message "Record type TXT is
not supported for referencing resource type dnsZones"
is never triggered when using the baseline strategy BAS.

Although CON already shows some benefit of learning from re-
sponses, its effectiveness is still limited when the request body does
not share the same schema with the response body. This can be seen

Intelligent REST API Data Fuzzing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

7.32%

7.18%

4.38%

4.31%

3.83%

Error code: Request Error

Error message:
The server encountered an
error processing the request.
The exception message is
“Expecting state ‘Element’…
Encountered ‘Text’ with
name ‘xxx’, namespace ‘xxx’…

Cause: Type mismatch

Figure 10: Percentage of tests triggering each error type (ren-
dering strategy: AGG+EXM, pipeline: DROP-SELECT-TYPE).

in the comparison between AGG vs. CON and AGG+EXM vs. CON+EXM,
where matching response values in the aggressive mode brings
even more improvements than in the conservative mode.

In general, using both the responses and the examples yields
better results. However, AGG+EXM does not outperform AGG signifi-
cantly. This is because the value rendering strategy AGG+EXM pri-
oritizes the values from responses over those from examples. Fur-
thermore, in aggressive mode, almost every node will find a match
in some responses, and thus examples are barely utilized.

After using the new value rendering strategies introduced in
Section 5.2.4, the distribution of error types significantly changes
and becomes more uniform: value-rendereing bottlenecks now
disappear. Figure 10 shows the percentage of tests triggering each
error type when applying the AGG+EXM value rendering strategy.
Compared to Figure 7, which uses BAS, the distribution is more
even and the most-frequently-triggered error type is now due to
type mismatch.

5.3.3 Conclusion.

• Using examples from the Swagger specification when select-
ing a value for a leaf node is helpful in covering more error
types.

• Learning from responses when selecting a value for a leaf
node provides a significant improvement in covering more
error types, especially when matching the values in the ag-
gressive mode.

• Utilizing both responses and examples is usually beneficial
in covering more error types.

6 BUG HUNTING IN CLOUD SERVICES
6.1 REST API Data Fuzzing Algorithm
Based on the evaluation results presented in Sections 3 to 5, we now
define our overall REST API data fuzzing algorithm used for longer
fuzzing experiments to find bugs in cloud services. The algorithm
is divided into two phases, using the fuzzing rules DUPLICATE and
DROP-SELECT-TYPE, respectively. Each phase has a budget of 10
times the number of nodes in the schema. The first phase focuses
on generating data payloads violating the JSON format, while the
second phase focuses on testing various tree structures and type

mismatches. When pipelining schema fuzzing rules, we use the
RD search heuristic with a random seed 0. We render every selected
fuzzed-schema using the AGG+EXM value rendering strategy.

The second phase DROP-SELECT-TYPE is itself divided into two
steps. In the first step, we apply the schema fuzzing rule pipeline
DROP-SELECT to the original schema and test the generated fuzzed-
schemas up to 10% of the budget; during this testing process, we
analyze the responses on-the-fly and select one fuzzed-schema for
every unique error type. In the second step, we apply the fuzzing
rule TYPE to all previously selected fuzzed-schemas for up to 90%
of the budget.

All the results of this Section were obtained using this algorithm.

6.2 Experimental Setup
To evaluate the effectiveness of our new REST API data fuzzing
algorithm at finding new bugs in existing cloud services, we fuzzed
Microsoft Azure cloud services related to networking. They are
used, for example, to allocate IP addresses and domain names, or
to provide higher-level infrastructures, such as load balancers and
firewalls.2 Specifically, we fuzzed the Azure DNS service already
used as a benchmark in the previous sections, and a large collection
of other networking services. Their Swagger specifications are
publicly available on GitHub [25] under the specification/dns/
and specification/network/ directories, respectively.

The Azure DNS API consists of 13 request types described in
about 4,000 lines of Swagger specifications (including examples).

The Azure networking API is much larger: it is a collection of
38 different APIs, targeting different services, that are written and
maintained by different service owners. Overall, this API consists
of 371 request types described in about 58,000 lines of Swagger
specifications across 435 files (including examples).

All experiments were conducted on a single commodity PC with
an Intel i7 processor and 32GB of main memory under Windows 10.
We ran RESTler extended with our new REST data fuzzing algorithm
in a single thread and process. We used a regular Azure subscrip-
tion3 to authenticate and access the Azure services being tested.
No other special test setup or service knowledge was required.

6.3 Azure DNS Bugs Found
Table 1 summarizes the bugs found while fuzzing the bodies of the
4 (out of 13) DNS requests with non-empty body schemas. Overall,
in 232 minutes of fuzzing, we generated 14,964 tests (API requests)
and found 27 instances of Internal Server Error bugs. After
triaging these, we reported 7 unique bugs to Azure developers.
These bugs are briefly described in Table 1. Bug 1 was found by
replacing a valid location (like "global") by an empty array. This
bug was also found multiple times in Azure networking services,
as will be discussed below. Bug 2 was found when the type of DNS
record-set specified in the path of the REST API request did not
match the type of Records in the body of the request after fuzzing
that body; 7 variants were found by our fuzzer. Bug 3 occurs when
Records becomes empty or an empty array. Bug 4 was triggered
when replacing an integer value by a boolean value like false; in
total, 13 integer nodes were subject to this bug. Bugs 5, 6 and 7

2See https://azure.microsoft.com/en-us/product-categories/networking/
3Anyone can get a free trial Azure account from azure.com.

https://azure.microsoft.com/en-us/product-categories/networking/

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk

Table 1: Overview of the bugs found in Azure DNS REST APIs.

API Request Schema node Bug description Variants

1 PUT DNS-Zone location Type mismatch (string to array or boolean) 2
2 PUT DNS-Record-Set Records Enum type mismatch between request path and body (e.g., SRV and caaRecords) 7
3 PUT DNS-Record-Set Records Missing node (e.g., "ARecords":{} or "ARecords":[{}]) 3
4 PUT DNS-Record-Set value Type mismatch (integer to boolean or string) 13
5 PATCH DNS-Record-Set Records Enum type mismatch between request path and body (e.g., AAAA and SRVRecords) 5
6 PATCH DNS-Record-Set Records Missing node (e.g., "TXTRecords":{} or "TXTRecords":[{}]) 2
7 PATCH DNS-Record-Set TTL Type mismatch (integer to boolean or string) 7

Table 2: Overview of the bugs found in Azure Networking REST APIs.

API Request Schema node Bug description Variants

1 PUT virtualWans location Type mismatch (string to array or boolean) 28
2 PUT virtualNetworks addressSpace Type mismatch (object to boolean) 1
3 PUT virtualNetworks addressPrefixes Type mismatch (array to boolean) 1
4 PUT virtualNetworks addressPrefixes_array Type mismatch (object to boolean) 1
5 PUT virtualNetworks subnets_name Type mismatch (string to integer) 1
6 PUT virtualNetworks subnets_addressPrefix Type mismatch (array to boolean) 1
7 PUT virtualNetworks subnets_delegations_name Type mismatch (string to boolean) 1
8 PUT virtualNetworks subnets_delegations_properties Type mismatch (array to boolean) 1
9 PUT virtualNetworks subnets_delegations Missing node (e.g., properties) 1
10 PUT virtualNetworks subnets_delegations_properties Missing node (e.g., "properties":{}) 7

for PATCH DNS-Record-Set were similar to bugs 2, 3 and 4 for PUT
DNS-Record-Set, respectively. Note that these two requests have
the same body schema, which would explain similar bugs can be
found in both PUT and PATCH requests for DNS-Record-Set.

For DNS, we fuzzed API version 2017-10-01. This API has 13 re-
quests, including 4 requests with a non-empty body whose schema
size n is 2, 22, 65 and 65, respectively. We found Internal Server
Errors in 3 out of these 4 requests; the 4th request PATCH DNS-Zone
has only a small body schema with 2 nodes. During this fuzzing
session, 202 different error types were found. In other words, beside
the one error-type "500/Internal-Server-Error", there were 201 other
error types returned during these 14,964 tests, for a total of 202.

6.4 Azure Networking Bugs Found
Table 2 summarizes the bugs found while fuzzing the bodies of
the 49 (out of 371) Azure networking requests with non-empty
body schemas. Overall, in 203 minutes of fuzzing, we generated
47,434 tests (API requests) and found 273 instances of Internal
Server Error bugs. After triaging these4, we found 43 variants of
10 distinct bugs, which are briefly described in Table 2 and which
we reported to Azure developers. Bug 1 is similar to Bug 1 of Table 1:
replacing a valid location value by an empty array or a boolean
value. triggers an Internal Server Error. This bug can actually
be found using many other requests which take a location value
in their bodies, and all have a common root cause (as confirmed by
Azure developers). Bugs 2 to 10 were found while fuzzing the very
complex body of the PUT virtualNetworks request. Bugs 2 to 8
are found while fuzzing the type of various parts of the schema of
this request. In contrast, bugs 9 and 10 are found using structural

4Our tool automatically generates information as shown in columns 2-5 of Table 2 and
triaging took less than one hour.

fuzzing rules and removing two specific parts of the schema of that
request. The 7 variants of bug 10 are obtained by dropping various
parts of the properties sub-tree of a subnets_delegations, but
we grouped all these together for the sake of brevity.

For the Azure networking API, we fuzzed API version 2019-04-01.
This API has 371 requests, including 49 requests with a non-empty
body whose schema size n varies from 2 to 1,356 nodes. We found
Internal Server Errors across 29 of these 49 request types. Note
that 11 of the remaining 20 requests where we did not find any bug
have simple bodies with schemas of less than 10 nodes. During this
fuzzing session, 397 different error types were found.

As can be seen from Table 2, most of the bugs were found when
fuzzing the request PUT virtualNetworks, which has a large body
schemawith 521 nodes. However, fuzzing even larger body schemas,
such as the body of the PUT request for networkInterfaces with
1,247 nodes, did not find any new bug there, except for another
variant of bug 1.

6.5 Discussion
The number of tests executed per minute was slower with the DNS
service than with the Azure networking services. We repeated the
above experiments several times, but the overall results (i.e., the
number of bugs found) did not vary significantly. As we progres-
sively designed and evaluated the algorithms discussed in Sections 3
to 5, we started finding our first Internal Server Error bugs in
DNS only after introducing pipelines: without pipelines, we would
not have found any of the bugs of Tables 1 and 2. Note that RESTler
as-is (i.e., without our new extension) did not find any of these bugs
either. As can be seen from these two tables, the TYPE fuzzing rule
was key to findmany of these 17 bugs in conjunction with structural
fuzzing rules, which alone also found several other bugs. In contrast,
the DUPLICATE fuzzing rule, which may generate malformed JSON

Intelligent REST API Data Fuzzing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

request bodies, did not trigger any Internal Server Error bug
in our experiments; however, it did trigger two other bugs in DNS
where the response format was erroneously set to XML instead
of JSON, and did not follow the response schema defined in the
Swagger specification.

We reported all the bugs we found to Azure service developers.
All of them are easily reproducible (deterministic) and have been
acknowledged. We have been told that all of these bugs will be
fixed, and most of them have been fixed already. Indeed, Internal
Server Error bugs are unhandled exceptions, which may cause
severe service back-end state corruptions or leaks. It is safer to fix
these bugs rather than risk a live incident or outage with unknown
consequences.

7 RELATEDWORK
Test Authoring Tools for REST APIs. With the recent explosion of

web and cloud services, testing has been applied to REST APIs as
well, mostly in commercial tools, such as Postman [2], SoapUI [3],
and others [1, 4–6, 30]. These tools enable the automatic execution
of tests manually written by developers (like JUnit does in Java).

Test Generation Tools for REST APIs. Other tools available for test-
ing REST APIs generate new tests starting from manually-defined or
previously recorded API traffic, and then by fuzzing and replaying
new traffic to try finding bugs [12, 13, 16, 17, 20, 21, 29, 33, 36, 37].
Some of these can leverage REST API Swagger specifications and
then fuzz HTTP requests using either pre-defined heuristics [13,
20, 21, 29, 36] or user-defined rules [16, 33]. Other extensions are
possible if the service code can be instrumented [14] or if a func-
tional specification is available [31]. RESTler [15] is a recent tool
that performs a lightweight static analysis of a Swagger specifica-
tion in order to infer dependencies among request types, and then
automatically generates sequences of requests (instead of single re-
quests) in order to exercise the service behind the API more deeply,
in a stateful manner, and without pre-recorded API traffic. All these
tools can find bugs like 500 Internal Server Errors, but they
do not fuzz body payloads intelligently using JSON body schemas
and fuzzing rules as in this paper.

Grammar-based Fuzzing. General-purpose grammar-based fuzzers,
like Peach [28] and SPIKE [32] among others [33, 34], are not
Swagger-specific but can also be used to fuzz REST APIs. With these
tools, however, the user has to manually construct an API-specific
input grammar specifying what and how to fuzz. For structured
input formats like XML dialects, automatic XML-aware fuzzers
parse the high-level tree structure of an input and include custom
fuzzing rules (like reordering child nodes, increasing their number,
etc.) that will challenge the application logic while still generating
syntactically-correct XML [34]. Our JSON schema fuzzing rules
are inspired by related XML-fuzzing rules which have successfully
found new bugs in XML-based file parsers, such as Microsoft Office
XML-based formats (docx, xlsx, etc.) [22]. Compared to this prior
work, our main contributions are (1) to adapt such rules to the
context of REST API JSON data (Sections 3 to 5), (2) to conduct
a detailed evaluation of these rules, and (3) to demonstrate their
effectiveness in the REST API context by finding new bugs in ma-
ture cloud services (Section 6). Unlike prior off-line grammar-based

fuzzing, we also leverage dynamic feedback extracted from service
responses in order to learn new state-dependent data values and
then refine body payloads embedded in subsequent service requests.

API Attacks Based on Feedback from Responses. In our implemen-
tation, extra properties returned in responses that are not specified
in the (request or response) schema are simply ignored. However,
detecting and using such extra properties is relevant for mass as-
signment vulnerabilities. A mass assignment vulnerability may be
present when JSON data is bound to service-internal data structures
without proper filtering [7, 9]. For example, an attacker may gain
unauthorized access to parts of an API by observing an is_admin
or is_debug property in a response, then discovering requests that
allow setting it to true without having proper permissions. In fu-
ture work, we plan to explore how to extend our implementation
to check for such vulnerabilities.

8 CONCLUSION
This paper has 5 main contributions and takeaways.

(1) We demonstrate that REST API data processing bugs do exist
in widely-used cloud services.

(2) We show that such bugs are not that difficult to find provided
intelligent data fuzzing techniques are used.

(3) We describe several such data fuzzing techniques and evalu-
ate their effectiveness in the REST API context.

(4) Cloud service developers do not already use these techniques
(otherwise they would have found already the bugs we re-
ported in this paper).

(5) Cloud service developers care about these bugs (otherwise
they would not fix them).

To the best of our knowledge, this paper is the first to highlight
points 1-3 above. To further validate points 4 and 5, more REST
API data fuzzing experiments are needed with more REST APIs and
services.

Update. Since the first writing of this paper, we have fuzzed
several other large Azure services over the past few months, and
we have found over 100 new unique bugs in these so far (for a total
of thousands of crashes). We have reported these bugs to Azure
developers, and they are currently being reviewed and fixed.

ACKNOWLEDGMENTS
We thank Anton Evseev, Mikhail Triakhov, and Natalia Varava from
the Microsoft Azure Networking team for their comments on the
results of Section 6. We also thank the Azure developers that con-
firmed and fixed the new bugs reported in this work. More broadly,
we thank Albert Greenberg, Mark Russinovich, John Walton, and
CraigWittenberg, for encouraging us to pursue this line of research.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk

REFERENCES
[1] [n. d.]. Apigee Docs. https://docs.apigee.com/ Last accessed 2019-11-22.
[2] [n. d.]. Postman | API Development Environment. https://www.getpostman.com/

Last accessed 2019-11-22.
[3] [n. d.]. SoapUI. https://www.soapui.org/ Last accessed 2019-11-22.
[4] [n. d.]. vREST – Automated REST API Testing Tool. https://vrest.io/ Last

accessed 2019-11-22.
[5] 2019. APIFortress. http://apifortress.com Last accessed 2019-11-22.
[6] 2019. HttpMaster. http://www.httpmaster.net Last accessed 2019-11-22.
[7] 2019. Mass Assignment Cheat Sheet. https://github.com/OWASP/

CheatSheetSeries/blob/master/cheatsheets/Mass_Assignment_Cheat_Sheet.md
Last accessed 2019-11-22.

[8] 2019. Microsoft Azure DNS Service Documentation. https://docs.microsoft.com/
en-us/azure/dns/ Last accessed 2019-11-22.

[9] 2019. OWASP API Security. https://www.owasp.org/index.php/OWASP_API_
Security_Project Last accessed 2019-11-22.

[10] S. Allamaraju. 2010. RESTful Web Services Cookbook. O’Reilly.
[11] Amazon. 2019. Amazon Web Services (AWS) - Cloud Computing Services. https:

//aws.amazon.com/ Last accessed 2019-11-22.
[12] APIFuzzer [n. d.]. APIFuzzer. https://github.com/KissPeter/APIFuzzer.
[13] AppSpider [n. d.]. AppSpider. https://www.rapid7.com/products/appspider.
[14] Andrea Arcuri. 2019. RESTful API Automated Test Case Generation with Evo-

Master. ACM Transactions on Software Engineering and Methodology 28, 1 (2019).
[15] V. Atlidakis, P. Godefroid, and M. Polishchuk. 2019. RESTler: Stateful REST API

Fuzzing. In Proceedings of the 41st International Conference on Software Engineering
(ICSE ’19). IEEE Press, Piscataway, NJ, USA, 748–758. https://doi.org/10.1109/
ICSE.2019.00083

[16] Boofuzz [n. d.]. BooFuzz. https://github.com/jtpereyda/boofuzz.
[17] Burp [n. d.]. Burp Suite. https://portswigger.net/burp.
[18] Roy T. Fielding. 2000. Architectural styles and the design of network-based software

architectures. Vol. 7. University of California, Irvine Doctoral dissertation.
[19] J. E. Forrester and B. P. Miller. 2000. An Empirical Study of the Robustness

of Windows NT Applications Using Random Testing. In Proceedings of the 4th
USENIX Windows System Symposium. Seattle.

[20] fuzz-lightyear [n. d.]. Fuzz-Lightyear. https://github.com/Yelp/fuzz-lightyear.
[21] Fuzzy-Swagger [n. d.]. Fuzzy-Swagger. https://github.com/namuan/fuzzy-

swagger.
[22] T. Gallagher, B. Jeffries, and L. Landauer. 2006. Hunting Security Bugs. Microsoft

Press.
[23] P. Godefroid, M.Y. Levin, and D. Molnar. 2008. Automated Whitebox Fuzz Testing.

In Proceedings of NDSS’2008 (Network and Distributed Systems Security). San Diego,
151–166.

[24] H. Liu, S. Lu, M. Musuvathi, and S. Nath. 2019. What Bugs Cause Production
Cloud Incidents?. In Proceedings of HotOS’2019.

[25] Microsoft. 2019. Azure REST API Specifications. https://github.com/Azure/azure-
rest-api-specs Last accessed 2019-11-22.

[26] Microsoft. 2019. Microsoft Azure Cloud Computing Platform & Services. https:
//azure.microsoft.com/en-us/ Last accessed 2019-11-22.

[27] S. Newman. 2015. Building Microservices. O’Reilly.
[28] Peach 2019. Peach Fuzzer. http://www.peachfuzzer.com/. Last accessed 2019-11-

22.
[29] QualysWAS [n. d.]. Qualys Web Application Scanning (WAS). https://www.

qualys.com/apps/web-app-scanning/.
[30] REST-assured 2019. REST Assured. http://rest-assured.io/. Last accessed 2019-

11-22.
[31] Sergio Segura, José A. Parejo, Javier Troya, and Antonio Ruiz-Cortés. 2018. Meta-

morphic Testing of RESTful Web APIs. ACM Transactions on Software Engineering
44, 11 (2018).

[32] SPIKE 2019. SPIKE Fuzzer. http://resources.infosecinstitute.com/fuzzer-
automation-with-spike/. Last accessed 2019-11-22.

[33] Sulley [n. d.]. Sulley. https://github.com/OpenRCE/sulley.
[34] M. Sutton, A. Greene, and P. Amini. 2007. Fuzzing: Brute Force Vulnerability

Discovery. Addison-Wesley.
[35] Swagger [n. d.]. Swagger. https://swagger.io/.
[36] Swagger-Fuzzer [n. d.]. Swagger-Fuzzer. https://github.com/Lothiraldan/

swagger-fuzzer.
[37] TnT-Fuzzer [n. d.]. TnT-Fuzzer. https://github.com/Teebytes/TnT-Fuzzer.
[38] M. Zalewski. 2015. AFL (American Fuzzy Lop). http://lcamtuf.coredump.cx/afl/.

https://docs.apigee.com/
https://www.getpostman.com/
https://www.soapui.org/
https://vrest.io/
http://apifortress.com
http://www.httpmaster.net
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Mass_Assignment_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Mass_Assignment_Cheat_Sheet.md
https://docs.microsoft.com/en-us/azure/dns/
https://docs.microsoft.com/en-us/azure/dns/
https://www.owasp.org/index.php/OWASP_API_Security_Project
https://www.owasp.org/index.php/OWASP_API_Security_Project
https://aws.amazon.com/
https://aws.amazon.com/
https://github.com/KissPeter/APIFuzzer
https://www.rapid7.com/products/appspider
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICSE.2019.00083
https://github.com/jtpereyda/boofuzz
https://portswigger.net/burp
https://github.com/Yelp/fuzz-lightyear
https://github.com/namuan/fuzzy-swagger
https://github.com/namuan/fuzzy-swagger
https://github.com/Azure/azure-rest-api-specs
https://github.com/Azure/azure-rest-api-specs
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
http://www.peachfuzzer.com/
https://www.qualys.com/apps/web-app-scanning/
https://www.qualys.com/apps/web-app-scanning/
http://rest-assured.io/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
https://github.com/OpenRCE/sulley
https://swagger.io/
https://github.com/Lothiraldan/swagger-fuzzer
https://github.com/Lothiraldan/swagger-fuzzer
https://github.com/Teebytes/TnT-Fuzzer
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Schema Fuzzing
	3.1 Schema and Fuzzed-Schema
	3.2 Schema Fuzzing Rules
	3.3 Experimental Evaluation

	4 Combining Schema Fuzzing Rules
	4.1 Pipelining Schema Fuzzing Rules
	4.2 Experiments

	5 Data Value Rendering
	5.1 Challenges in Value Rendering
	5.2 Value Rendering Strategies
	5.3 Experiments

	6 Bug Hunting in Cloud Services
	6.1 REST API Data Fuzzing Algorithm
	6.2 Experimental Setup
	6.3 Azure DNS Bugs Found
	6.4 Azure Networking Bugs Found
	6.5 Discussion

	7 Related Work
	8 Conclusion
	References

