Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Cerca
Enterprise BusinessLog 970x120 1
Enterprise BusinessLog 320x200 1
Introduzione alle Recurrent Neural Networks

Introduzione alle Recurrent Neural Networks

Simone Raponi : 9 Agosto 2023 08:39

Benvenuti a questa serie di articoli sulle reti neurali ricorrenti (RNN). Queste reti sono una parte cruciale del progresso nell’ambito dell’intelligenza artificiale e del machine learning.

Nel corso di questa serie, il nostro obiettivo è quello di rendere questi concetti comprensibili anche per i non esperti.

Se dovessi averli persi, ti suggeriamo di recuperare gli articoli della serie relativa alle Convolutional Neural Networks:


Cve Enrichment Redhotcyber

CVE Enrichment
Mentre la finestra tra divulgazione pubblica di una vulnerabilità e sfruttamento si riduce sempre di più, Red Hot Cyber ha lanciato un servizio pensato per supportare professionisti IT, analisti della sicurezza, aziende e pentester: un sistema di monitoraggio gratuito che mostra le vulnerabilità critiche pubblicate negli ultimi 3 giorni dal database NVD degli Stati Uniti e l'accesso ai loro exploit su GitHub.

Cosa trovi nel servizio:
✅ Visualizzazione immediata delle CVE con filtri per gravità e vendor.
✅ Pagine dedicate per ogni CVE con arricchimento dati (NIST, EPSS, percentile di rischio, stato di sfruttamento CISA KEV).
✅ Link ad articoli di approfondimento ed exploit correlati su GitHub, per ottenere un quadro completo della minaccia.
✅ Funzione di ricerca: inserisci un codice CVE e accedi subito a insight completi e contestualizzati.


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

Iniziamo dal principio: cos’è una RNN e perché è importante?

Rappresentazione schematica di una rete neurale ricorrente

Cos’è una rete neurale ricorrente?

Le reti neurali ricorrenti sono un tipo di rete neurale artificiale. Per capire cosa significa, diamo un’occhiata a queste parole una per una.

Una “rete neurale” è un tipo di algoritmo di machine learning progettato per simulare il modo in cui il cervello umano elabora le informazioni. È composta da un gran numero di unità di elaborazione, chiamate “neuroni”, che sono organizzate in strati. Ogni neurone prende in input un insieme di dati, li elabora attraverso una serie di calcoli e produce un output. Nel caso in cui voglia approfondire, clicca qui per leggere il nostro articolo al riguardo.

La parola “artificiale” è usata per distinguere queste reti da quelle reali che si trovano nei cervelli degli esseri viventi.

Infine, “ricorrente” significa che la rete esegue la stessa operazione per ogni elemento di una sequenza, e l’output per un dato elemento dipende dagli input precedenti.

Questa ricorrenza è ciò che distingue le RNN da altre reti neurali. Le reti neurali tradizionali, come le reti neurali feedforward (FNN), processano ogni input indipendentemente. Le RNN, invece, tengono traccia delle informazioni che si sono verificate in precedenza nella sequenza. Questa caratteristica le rende particolarmente adatte all’elaborazione di dati sequenziali, come le serie temporali o le sequenze di parole in una frase.

Per esempio, prendiamo la frase “il gatto è sul tavolo”. Per comprendere il significato di questa frase, è necessario ricordare le parole che sono venute prima – “il gatto” – per capire ciò che “è sul tavolo”. Questo concetto di memoria o “stato nascosto” è uno dei principali vantaggi delle RNN rispetto ad altri tipi di reti neurali.

Perché le RNN sono importanti?

Le RNN sono un pilastro dell’elaborazione del linguaggio naturale (NLP), la branca dell’intelligenza artificiale che si occupa di capire e generare il linguaggio umano. Essendo in grado di gestire sequenze di dati di lunghezza variabile, sono particolarmente utili per compiti come la traduzione automatica, il riconoscimento vocale, e la generazione di testo.

Ad esempio, quando Google traduce una frase da una lingua all’altra, utilizza una tecnologia basata su RNN chiamata LSTM (Long Short-Term Memory) per tenere traccia del contesto della frase. Questo aiuta il sistema a produrre traduzioni più accurate che tengono conto non solo delle parole singole, ma anche del significato complessivo della frase.

Conclusioni

In questa introduzione alle reti neurali ricorrenti, abbiamo affrontato i concetti chiave che le rendono un elemento cruciale nell’ambito dell’intelligenza artificiale e del machine learning. Abbiamo visto come le RNN, grazie alla loro abilità di conservare lo “stato nascosto” o la memoria di ciò che è accaduto in precedenza in una sequenza di dati, rappresentino un metodo potente e flessibile per lavorare con dati sequenziali.

Che si tratti di interpretare il significato di una frase o di comprendere una serie temporale di dati, le RNN hanno dimostrato di poter gestire una vasta gamma di compiti che le reti neurali tradizionali troverebbero difficili. Ma, come tutte le tecnologie, non sono esenti da problemi. Il più noto di questi è il problema della “scomparsa del gradiente”, che affronteremo nel terzo articolo di questa serie.

Nonostante le sfide, l’importanza delle RNN nell’ambito dell’intelligenza artificiale è indiscutibile. Grazie a queste reti, possiamo tradurre lingue, generare testo, riconoscere la voce e molto altro ancora. Con il continuo progresso delle tecniche di apprendimento profondo, le potenzialità future delle RNN sono davvero entusiasmanti.

Speriamo che questa introduzione alle RNN vi sia stata utile. Nel prossimo articolo, ci addentreremo nel funzionamento interno delle RNN, esaminando la loro architettura e il modo in cui elaborano i dati. Continuate a seguirci per saperne di più!

Riferimenti e Approfondimenti

Per saperne di più sulle reti neurali ricorrenti, vi consigliamo di consultare le seguenti risorse:

Understanding LSTM Networks – Questo articolo di Chris Olah offre un’introduzione chiara ed esaustiva ai concetti chiave delle RNN e, in particolare, alla variante LSTM.

The Unreasonable Effectiveness of Recurrent Neural Networks – In questo post, Andrej Karpathy, AI director di Tesla, mostra alcune delle incredibili cose che le RNN possono fare.

Deep Learning Book – Chapter 10 – Se siete interessati ad un approfondimento più tecnico, il capitolo 10 del Deep Learning Book è un’ottima risorsa. È scritto da Ian Goodfellow, Yoshua Bengio e Aaron Courville, che sono alcuni dei principali ricercatori nel campo del deep learning.

Immagine del sitoSimone Raponi
Esperto in machine learning e sicurezza informatica. Ha un dottorato in Computer Science and Engineering, durante il quale ha sviluppato modelli di intelligenza artificiale per rilevare pattern correlati alla cybersecurity. Durante la sua carriera accademica ha ricevuto diversi riconoscimenti ed ha pubblicato numerosi articoli scientifici divenuti popolari nell'ambito. Ex Machine Learning Scientist alla NATO, attualmente lavora come AI/ML Cybersecurity Engineer per una startup, dove impiega quotidianamente algoritmi di AI per affrontare e risolvere complesse sfide nel campo dell'automazione della sicurezza informatica.

Lista degli articoli

Articoli in evidenza

Immagine del sito
Cloudflare blackout globale: si è trattato di un errore tecnico interno. Scopriamo la causa
Di Redazione RHC - 19/11/2025

Il 18 novembre 2025, alle 11:20 UTC, una parte significativa dell’infrastruttura globale di Cloudflare ha improvvisamente cessato di instradare correttamente il traffico Internet, mostrando a milion...

Immagine del sito
Misoginia 2.0: l’istigazione all’odio che zittisce le donne
Di Paolo Galdieri - 19/11/2025

Questo è il quinto di una serie di articoli dedicati all’analisi della violenza di genere nel contesto digitale, in coincidenza con la Giornata Internazionale per l’Eliminazione della Violenza co...

Immagine del sito
Cloudflare va giù nel magnifico Cloud! incidente globale in fase di risoluzione
Di Redazione RHC - 18/11/2025

18 novembre 2025 – Dopo ore di malfunzionamenti diffusi, l’incidente che ha colpito la rete globale di Cloudflare sembra finalmente vicino alla risoluzione. L’azienda ha comunicato di aver imple...

Immagine del sito
Cloudflare down: siti web e servizi offline il 18 novembre 2025
Di Redazione RHC - 18/11/2025

La mattinata del 18 novembre 2025 sarà ricordata come uno dei blackout più anomali e diffusi della rete Cloudflare degli ultimi mesi. La CDN – cuore pulsante di milioni di siti web, applicazioni e...

Immagine del sito
Shakerati Anonimi: l’esperienza di Nicoletta e il thriller della carta di credito
Di Redazione RHC - 18/11/2025

La stanza è la solita: luci tenui, sedie in cerchio, termos di tisane ormai diventate fredde da quanto tutti parlano e si sfogano. Siamo gli Shakerati Anonimi, un gruppo di persone che non avrebbe ma...