Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Condividi la tua difesa. Incoraggia l'eccellenza.
La vera forza della cybersecurity risiede
nell'effetto moltiplicatore della conoscenza.
Banner Ancharia Desktop 1 1
Redhotcyber Banner Sito 320x100px Uscita 101125
Introduzione alle Recurrent Neural Networks

Introduzione alle Recurrent Neural Networks

9 Agosto 2023 08:39

Benvenuti a questa serie di articoli sulle reti neurali ricorrenti (RNN). Queste reti sono una parte cruciale del progresso nell’ambito dell’intelligenza artificiale e del machine learning.

Nel corso di questa serie, il nostro obiettivo è quello di rendere questi concetti comprensibili anche per i non esperti.

Se dovessi averli persi, ti suggeriamo di recuperare gli articoli della serie relativa alle Convolutional Neural Networks:


Christmas Sale

Christmas Sale -40%
𝗖𝗵𝗿𝗶𝘀𝘁𝗺𝗮𝘀 𝗦𝗮𝗹𝗲! Sconto del 𝟰𝟬% 𝘀𝘂𝗹 𝗽𝗿𝗲𝘇𝘇𝗼 𝗱𝗶 𝗰𝗼𝗽𝗲𝗿𝘁𝗶𝗻𝗮 del Corso "Dark Web & Cyber Threat Intelligence" in modalità E-Learning sulla nostra Academy!🚀 Fino al 𝟯𝟭 𝗱𝗶 𝗗𝗶𝗰𝗲𝗺𝗯𝗿𝗲, prezzi pazzi alla Red Hot Cyber Academy. 𝗧𝘂𝘁𝘁𝗶 𝗶 𝗰𝗼𝗿𝘀𝗶 𝘀𝗰𝗼𝗻𝘁𝗮𝘁𝗶 𝗱𝗲𝗹 𝟰𝟬% 𝘀𝘂𝗹 𝗽𝗿𝗲𝘇𝘇𝗼 𝗱𝗶 𝗰𝗼𝗽𝗲𝗿𝘁𝗶𝗻𝗮.
Per beneficiare della promo sconto Christmas Sale, scrivici ad [email protected] o contattaci su Whatsapp al numero di telefono: 379 163 8765.


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

Iniziamo dal principio: cos’è una RNN e perché è importante?

Rappresentazione schematica di una rete neurale ricorrente

Cos’è una rete neurale ricorrente?

Le reti neurali ricorrenti sono un tipo di rete neurale artificiale. Per capire cosa significa, diamo un’occhiata a queste parole una per una.

Una “rete neurale” è un tipo di algoritmo di machine learning progettato per simulare il modo in cui il cervello umano elabora le informazioni. È composta da un gran numero di unità di elaborazione, chiamate “neuroni”, che sono organizzate in strati. Ogni neurone prende in input un insieme di dati, li elabora attraverso una serie di calcoli e produce un output. Nel caso in cui voglia approfondire, clicca qui per leggere il nostro articolo al riguardo.

La parola “artificiale” è usata per distinguere queste reti da quelle reali che si trovano nei cervelli degli esseri viventi.

Infine, “ricorrente” significa che la rete esegue la stessa operazione per ogni elemento di una sequenza, e l’output per un dato elemento dipende dagli input precedenti.

Questa ricorrenza è ciò che distingue le RNN da altre reti neurali. Le reti neurali tradizionali, come le reti neurali feedforward (FNN), processano ogni input indipendentemente. Le RNN, invece, tengono traccia delle informazioni che si sono verificate in precedenza nella sequenza. Questa caratteristica le rende particolarmente adatte all’elaborazione di dati sequenziali, come le serie temporali o le sequenze di parole in una frase.

Per esempio, prendiamo la frase “il gatto è sul tavolo”. Per comprendere il significato di questa frase, è necessario ricordare le parole che sono venute prima – “il gatto” – per capire ciò che “è sul tavolo”. Questo concetto di memoria o “stato nascosto” è uno dei principali vantaggi delle RNN rispetto ad altri tipi di reti neurali.

Perché le RNN sono importanti?

Le RNN sono un pilastro dell’elaborazione del linguaggio naturale (NLP), la branca dell’intelligenza artificiale che si occupa di capire e generare il linguaggio umano. Essendo in grado di gestire sequenze di dati di lunghezza variabile, sono particolarmente utili per compiti come la traduzione automatica, il riconoscimento vocale, e la generazione di testo.

Ad esempio, quando Google traduce una frase da una lingua all’altra, utilizza una tecnologia basata su RNN chiamata LSTM (Long Short-Term Memory) per tenere traccia del contesto della frase. Questo aiuta il sistema a produrre traduzioni più accurate che tengono conto non solo delle parole singole, ma anche del significato complessivo della frase.

Conclusioni

In questa introduzione alle reti neurali ricorrenti, abbiamo affrontato i concetti chiave che le rendono un elemento cruciale nell’ambito dell’intelligenza artificiale e del machine learning. Abbiamo visto come le RNN, grazie alla loro abilità di conservare lo “stato nascosto” o la memoria di ciò che è accaduto in precedenza in una sequenza di dati, rappresentino un metodo potente e flessibile per lavorare con dati sequenziali.

Che si tratti di interpretare il significato di una frase o di comprendere una serie temporale di dati, le RNN hanno dimostrato di poter gestire una vasta gamma di compiti che le reti neurali tradizionali troverebbero difficili. Ma, come tutte le tecnologie, non sono esenti da problemi. Il più noto di questi è il problema della “scomparsa del gradiente”, che affronteremo nel terzo articolo di questa serie.

Nonostante le sfide, l’importanza delle RNN nell’ambito dell’intelligenza artificiale è indiscutibile. Grazie a queste reti, possiamo tradurre lingue, generare testo, riconoscere la voce e molto altro ancora. Con il continuo progresso delle tecniche di apprendimento profondo, le potenzialità future delle RNN sono davvero entusiasmanti.

Speriamo che questa introduzione alle RNN vi sia stata utile. Nel prossimo articolo, ci addentreremo nel funzionamento interno delle RNN, esaminando la loro architettura e il modo in cui elaborano i dati. Continuate a seguirci per saperne di più!

Riferimenti e Approfondimenti

Per saperne di più sulle reti neurali ricorrenti, vi consigliamo di consultare le seguenti risorse:

Understanding LSTM Networks – Questo articolo di Chris Olah offre un’introduzione chiara ed esaustiva ai concetti chiave delle RNN e, in particolare, alla variante LSTM.

The Unreasonable Effectiveness of Recurrent Neural Networks – In questo post, Andrej Karpathy, AI director di Tesla, mostra alcune delle incredibili cose che le RNN possono fare.

Deep Learning Book – Chapter 10 – Se siete interessati ad un approfondimento più tecnico, il capitolo 10 del Deep Learning Book è un’ottima risorsa. È scritto da Ian Goodfellow, Yoshua Bengio e Aaron Courville, che sono alcuni dei principali ricercatori nel campo del deep learning.

Ti è piaciutno questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Simone Raponi 300x300
Esperto in machine learning e sicurezza informatica. Ha un dottorato in Computer Science and Engineering, durante il quale ha sviluppato modelli di intelligenza artificiale per rilevare pattern correlati alla cybersecurity. Durante la sua carriera accademica ha ricevuto diversi riconoscimenti ed ha pubblicato numerosi articoli scientifici divenuti popolari nell'ambito. Ex Machine Learning Scientist alla NATO, attualmente lavora come AI/ML Cybersecurity Engineer per una startup, dove impiega quotidianamente algoritmi di AI per affrontare e risolvere complesse sfide nel campo dell'automazione della sicurezza informatica.

Articoli in evidenza

Immagine del sitoHacking
Arriva Windows X-Lite! Il Windows 11 ottimizzato per PC che tutti aspettavano
Redazione RHC - 31/12/2025

Il 31 dicembre, per i giocatori e gli utenti di computer più vecchi che puntano alle massime prestazioni, la versione ufficiale di Windows 11 sembra essere spesso troppo pesante. Tuttavia, il celebre Windows X-Lite ha…

Immagine del sitoCyber Italia
Italia 2025: ransomware in crescita. Nel 2026 più notifiche, più casi
Sandro Sana - 31/12/2025

Nel 2025 il ransomware in Italia non ha “alzato la testa”. Ce l’aveva già alzata da anni. Noi, semmai, abbiamo continuato a far finta di niente. E i numeri – quelli che finiscono in vetrina,…

Immagine del sitoCyberpolitica
Telegram e abusi su minori: perché il calo dei ban nel 2025 non è una buona notizia
Simone D'Agostino - 31/12/2025

Ogni giorno Telegram pubblica, attraverso il canale ufficiale Stop Child Abuse, il numero di gruppi e canali rimossi perché riconducibili ad abusi su minori. Il confronto più significativo emerge osservando le sequenze di fine anno,…

Immagine del sitoCybercrime
Invece di salvare le aziende dal ransomware, le attaccavano. Due esperti affiliati di BlackCat
Redazione RHC - 31/12/2025

Nel panorama delle indagini sui crimini informatici, alcuni casi assumono un rilievo particolare non solo per l’entità dei danni economici, ma per il profilo delle persone coinvolte. Le inchieste sul ransomware, spesso associate a gruppi…

Immagine del sitoCybercrime
Cybercrime 2026: Quando gli attacchi informatici diventano violenza reale
Redazione RHC - 31/12/2025

Nel 2025, la criminalità informatica andrà sempre più oltre il “semplice denaro”: gli attacchi non riguardano solo fatture per tempi di inattività e pagamenti di riscatti, ma anche conseguenze umane reali, dalle interruzioni dell’assistenza sanitaria…