Red Hot Cyber
La cybersecurity è condivisione. Riconosci il rischio, combattilo, condividi le tue esperienze ed incentiva gli altri a fare meglio di te.
Cerca

Decifrata la scrittura cuneiforme dall’Intelligenza Artificiale: un Salto quantico nella Storia!

Redazione RHC : 28 Novembre 2023 09:50

Un team dell’Università Martin Luther di Halle-Wittenberg, dell’Università Johannes Gutenberg di Magonza e dell’Università di Scienze Applicate di Magonza ha svelato un sistema di intelligenza artificiale in grado di decifrare antichi testi cuneiformi. Questa nuova tecnologia, che sfrutta i modelli 3D, rappresenta un progresso significativo nella comprensione di una delle prime forme di scrittura dell’umanità.

Pubblicato sulla rivista The Eurographics Association, lo studio dei ricercatori si è concentrato su una serie di tavolette cuneiformi della  collezione Frau Professor Hilprecht. Queste tavolette provengono principalmente dall’antica Mesopotamia, una regione storica dell’attuale Iraq. 

Spesso definita la culla della civiltà, quest’area è il luogo in cui si svilupparono alcune delle prime società umane. Su queste tavolette, in particolare, sono incisi una serie di simboli, segni e cunei che formano le lingue della regione, come il sumero, l’assiro e l’accadico. Il team si è rivolto all’intelligenza artificiale per chiedere aiuto.

CORSO NIS2 : Network and Information system 2
La direttiva NIS2 rappresenta una delle novità più importanti per la sicurezza informatica in Europa, imponendo nuovi obblighi alle aziende e alle infrastrutture critiche per migliorare la resilienza contro le cyber minacce. Con scadenze stringenti e penalità elevate per chi non si adegua, comprendere i requisiti della NIS2 è essenziale per garantire la compliance e proteggere la tua organizzazione.

Accedi All'Anteprima del Corso condotto dall'Avv. Andrea Capelli sulla nostra Academy e segui l'anteprima gratuita.
Per ulteriori informazioni, scrivici ad [email protected] oppure scrivici su Whatsapp al 379 163 8765 

Supporta RHC attraverso:


Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.

Utilizzando un nuovo processo di intelligenza artificiale per decodificare antiche tavolette cuneiformi, hanno sfruttato un sofisticato modello di intelligenza artificiale basato sull’architettura R-CNN (Convolutional Neural Network), un sistema specializzato progettato per il riconoscimento degli oggetti. Lo studio ha utilizzato un set di dati unico costituito da modelli 3D di 1.977 tavolette cuneiformi, con annotazioni dettagliate di 21.000 segni cuneiformi e 4.700 cunei. 

La metodologia dell’intelligenza artificiale prevedeva una pipeline in due parti: inizialmente, un rilevatore di segni, costruito su un modello RepPoints con un backbone ResNet18, identificava i caratteri cuneiformi sui tablet. In termini semplici, il modello RepPoints analizza la raccolta ResNet18 di immagini collegate alle lingue mesopotamiche e quindi combina i modelli per “vedere” il testo. 

Questo passaggio è stato fondamentale per individuare accuratamente i segnali. Successivamente, il rilevatore di cunei, utilizzando Point R-CNN con funzionalità avanzate come Feature Pyramid Network (FPN) e RoI Align, ha classificato e previsto le posizioni dei cunei, che costituiscono la base degli elementi fondamentali della scrittura cuneiforme, consentendo all’IA di leggerli.

Questi strumenti prendono le scansioni 3D delle tavolette e vagliano la moltitudine di misurazioni di cose come la profondità dell’impressione lasciata dallo stilo nell’argilla o la distanza tra i simboli e i cunei. Questo approccio ha consentito all’intelligenza artificiale di superare le sfide poste dalle tradizionali fotografie 2D, come illuminazione incoerente e distrazioni cromatiche, fornendo così un’analisi più accurata dei testi antichi.

La ricerca tradizionale sui testi antichi utilizza un software di riconoscimento ottico dei caratteri (OCR), che converte le immagini scansionate o le fotografie 2D della scrittura in testo leggibile dalla macchina. 

“L’OCR di solito funziona con fotografie o scansioni. Questo non è un problema per l’inchiostro su carta o pergamena. Nel caso delle tavolette cuneiformi, tuttavia, le cose sono più difficili perché la luce e l’angolo di visione influenzano notevolmente il modo in cui alcuni caratteri possono essere identificati”, ha affermato il coautore Ernst Stötzner.

Redazione
La redazione di Red Hot Cyber è composta da un insieme di persone fisiche e fonti anonime che collaborano attivamente fornendo informazioni in anteprima e news sulla sicurezza informatica e sull'informatica in generale.

Lista degli articoli

Articoli in evidenza

RHC Intervista GhostSec: l’hacktivismo tra le ombre del terrorismo e del conflitto cibernetico

Ghost Security, noto anche come GhostSec, è un gruppo hacktivista emerso nel contesto della guerra cibernetica contro l’estremismo islamico. Le sue prime azioni risalgono alla fase success...

Arriva PathWiper! Il nuovo malware che devasta le infrastrutture critiche in Ucraina

Gli analisti di Cisco Talos hanno segnalato che le infrastrutture critiche in Ucraina sono state attaccate da un nuovo malware che distrugge i dati chiamato PathWiper. I ricercatori scrivono...

Claude Opus 4: l’intelligenza artificiale che vuole vivere e ha imparato a ricattare

“Se mi spegnete, racconterò a tutti della vostra relazione”, avevamo riportato in un precedente articolo. E’ vero le intelligenze artificiali sono forme di comunicazione basa...

Rilasciato un PoC su GitHub per la vulnerabilità critica RCE nei prodotti Fortinet

Negli ultimi giorni è stato pubblicato su GitHub un proof-of-concept (PoC) per il bug di sicurezza monitorato con il codice CVE-2025-32756, una vulnerabilità critica che interessa diversi pr...

Federazione Russa: 8 Anni di Carcere per un attacco DDoS! La nuova Legge Shock in Arrivo

Secondo quanto riportato dai media, il governo russo ha preparato degli emendamenti al Codice penale, introducendo la responsabilità per gli attacchi DDoS: la pena massima potrebbe includere una ...