Red Hot Cyber
Sicurezza Informatica, Notizie su Cybercrime e Analisi Vulnerabilità

PIGINet migliora le capacità di problem solving dei robot domestici

22 Luglio 2023 20:04

I ricercatori del MIT hanno sviluppato PIGINet, un nuovo sistema che mira a migliorare in modo efficiente le capacità di risoluzione dei problemi dei robot domestici, riducendo i tempi di pianificazione del 50-80%.

Ciò è stato rilevato da un comunicato stampa dell’istituto pubblicato venerdì.

In condizioni normali, i robot domestici seguono procedimenti predefiniti per eseguire i compiti, il che non è sempre adatto ad ambienti diversi o mutevoli. PIGINet, come descritto dal MIT, è una rete che prende in considerazione “piani, immagini, obiettivi e fatti iniziali”, quindi prevede la probabilità che un piano di attività possa essere perfezionato per trovare piani di movimento fattibili.

Il team ha valutato la capacità del nuovo sistema di aiutare un robot a funzionare in cucina. Hanno misurato il tempo necessario per risolvere i problemi con l’assistenza di PIGINet rispetto agli approcci precedenti.

I risultati di PIGINet

Hanno scoperto che PIGINet ha ridotto significativamente il tempo di pianificazione dell’80% negli scenari più semplici e del 20-50% in quelli più complessi.

“Sistemi come PIGINet, che sfruttano la potenza dei metodi basati sui dati per gestire in modo efficiente casi già noti, ma che possono comunque ricorrere a metodi di pianificazione “di primo principio” per verificare i suggerimenti basati sull’apprendimento e risolvere problemi nuovi, offrono il meglio di entrambi i mondi, fornendo soluzioni generali affidabili ed efficienti per un’ampia varietà di problemi”, ha dichiarato Leslie Pack Kaelbling, professore del MIT e ricercatore principale del CSAIL.

I ricercatori si sono avvalsi anche di modelli linguistici di visione preaddestrati e di trucchi per aumentare i dati per far fronte alla scarsità di dati di addestramento validi per i robot domestici.

Obiettivi

“Poiché la casa di ognuno di noi è diversa, i robot dovrebbero essere in grado di risolvere i problemi adattandosi ad ogni luogo, anziché limitarsi a seguire le indicazioni passo passo. La nostra idea è lasciare che un task planner generico generi piani di attività e utilizzare un modello di deep learning per selezionare quelli più promettenti. Il risultato è un robot domestico più efficiente, adattabile e pratico, in grado di navigare agilmente anche in ambienti complessi e dinamici. Inoltre, le applicazioni pratiche di PIGINet non si limitano alle abitazioni”, ha dichiarato Zhutian Yang, dottorando del MIT CSAIL e autore principale del lavoro.

“Il nostro obiettivo futuro è quello di perfezionare ulteriormente PIGINet per suggerire piani di attività alternativi dopo aver identificato azioni non fattibili. Ciò accelererà ulteriormente la generazione di piani di attività fattibili senza la necessità di grandi insiemi di dati per addestrare un pianificatore generico da zero. Crediamo che questo possa rivoluzionare il modo in cui i robot vengono addestrati durante lo sviluppo e poi applicati nelle case di tutti”.

“Questo lavoro affronta una sfida importante nell’implementazione di un robot generico: come imparare dall’esperienza passata per accelerare il processo decisionale in ambienti non strutturati e colmi di ostacoli”. Questo è ciò che ha dichiarato Beomjoon Kim PhD ’20, professore assistente presso la Graduate School of AI del Korea Advanced Institute of Science and Technology (KAIST).

Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

TOMASELLI ALESSIA 150x150
Laureata in Mediazione Linguistica per le lingue inglese e spagnolo, attualmente lavora come copywriter presso s-mart.biz, società leader nella sicurezza informatica.
Aree di competenza: Innovazione tecnologica, Awareness, Redazione Red Hot Cyber

Articoli in evidenza

Immagine del sitoInnovazione
Robot in cerca di carne: Quando l’AI affitta periferiche. Il tuo corpo!
Silvia Felici - 06/02/2026

L’evoluzione dell’Intelligenza Artificiale ha superato una nuova, inquietante frontiera. Se fino a ieri parlavamo di algoritmi confinati dietro uno schermo, oggi ci troviamo di fronte al concetto di “Meatspace Layer”: un’infrastruttura dove le macchine non…

Immagine del sitoCybercrime
DKnife: il framework di spionaggio Cinese che manipola le reti
Pietro Melillo - 06/02/2026

Negli ultimi anni, la sicurezza delle reti ha affrontato minacce sempre più sofisticate, capaci di aggirare le difese tradizionali e di penetrare negli strati più profondi delle infrastrutture. Un’analisi recente ha portato alla luce uno…

Immagine del sitoVulnerabilità
Così tante vulnerabilità in n8n tutti in questo momento. Cosa sta succedendo?
Agostino Pellegrino - 06/02/2026

Negli ultimi tempi, la piattaforma di automazione n8n sta affrontando una serie crescente di bug di sicurezza. n8n è una piattaforma di automazione che trasforma task complessi in operazioni semplici e veloci. Con pochi click…

Immagine del sitoInnovazione
L’IA va in orbita: Qwen 3, Starcloud e l’ascesa del calcolo spaziale
Sergio Corpettini - 06/02/2026

Articolo scritto con la collaborazione di Giovanni Pollola. Per anni, “IA a bordo dei satelliti” serviva soprattutto a “ripulire” i dati: meno rumore nelle immagini e nei dati acquisiti attraverso i vari payload multisensoriali, meno…

Immagine del sitoCyber Italia
Truffe WhatsApp: “Prestami dei soldi”. Il messaggio che può svuotarti il conto
Silvia Felici - 06/02/2026

Negli ultimi giorni è stato segnalato un preoccupante aumento di truffe diffuse tramite WhatsApp dal CERT-AGID. I messaggi arrivano apparentemente da contatti conosciuti e richiedono urgentemente denaro, spesso per emergenze come spese mediche improvvise. La…