Red Hot Cyber
La cybersecurity è condivisione. Riconosci il rischio, combattilo, condividi le tue esperienze ed incentiva gli altri a fare meglio di te.
Cerca

I futuri algoritmi AI potranno imparare come gli esseri umani

Alessia Tomaselli : 29 Luglio 2023 15:30

I ricordi possono essere difficili da conservare per le macchine AI come per gli esseri umani. Per capire perché le macchine artificiali sviluppano dei buchi nei loro processi cognitivi, gli ingegneri elettrici della Ohio State University hanno analizzato quanto un processo chiamato “apprendimento continuo” influisca sulle loro prestazioni complessive.

L’apprendimento continuo avviene quando un computer viene addestrato ad apprendere una sequenza di compiti utilizzando le conoscenze accumulate dalle vecchie task.

Ostacoli e sfide dell’AI

Tuttavia, un ostacolo importante che gli scienziati devono ancora superare per raggiungere tali livelli è imparare a evitare la perdita di memoria. Un processo che negli agenti di intelligenza artificiale è noto come “dimenticanza catastrofica”. Quando le reti neurali artificiali vengono addestrate a svolgere un compito dopo l’altro, tendono a perdere le informazioni acquisite con i compiti precedenti. Un problema che potrebbe diventare problematico man mano che la società si affida sempre di più ai sistemi di AI. Come ha dichiarato Ness Shroff, un Eminent Scholar dell’Ohio e professore di informatica e ingegneria presso la Ohio State University.

CORSO NIS2 : Network and Information system 2
La direttiva NIS2 rappresenta una delle novità più importanti per la sicurezza informatica in Europa, imponendo nuovi obblighi alle aziende e alle infrastrutture critiche per migliorare la resilienza contro le cyber minacce. Con scadenze stringenti e penalità elevate per chi non si adegua, comprendere i requisiti della NIS2 è essenziale per garantire la compliance e proteggere la tua organizzazione.

Accedi All'Anteprima del Corso condotto dall'Avv. Andrea Capelli sulla nostra Academy e segui l'anteprima gratuita.
Per ulteriori informazioni, scrivici ad [email protected] oppure scrivici su Whatsapp al 379 163 8765 

Supporta RHC attraverso:


Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.

“Quando le applicazioni di guida automatizzata o altri sistemi robotici imparano cose nuove, è importante che non dimentichino le lezioni già apprese, per la nostra e la loro sicurezza”, ha affermato Shroff. “La nostra ricerca approfondisce le complessità dell’apprendimento continuo in queste reti neurali artificiali. E ciò che abbiamo scoperto è un qualcosa che inizia a colmare il divario tra il modo in cui una macchina apprende e quello in cui un essere umano apprende”.

I ricercatori hanno scoperto che le reti neurali artificiali sono in grado di ricordare meglio le informazioni quando si trovano di fronte a compiti diversi. Al contrario, faticano a ricordare quelli che condividono caratteristiche simili, ha detto Shroff. Le persone, invece, possono faticare a ricordare fatti contrastanti su scenari simili, ma ricordano con facilità situazioni intrinsecamente diverse.

Il team, che comprende i ricercatori post-dottorato Sen Lin e Peizhong Ju e i professori Yingbin Liang e Shroff, presenterà la propria ricerca alla fine del mese alla 40a Conferenza internazionale sull’apprendimento automatico di Honolulu. Si terrà nelle Hawaii e sarà una delle principali conferenze sull’apprendimento automatico.

Quali novità porterebbe il nuovo apprendimento dell’AI?

Può essere difficile insegnare ai sistemi autonomi ad utilizzare questo tipo di apprendimento dinamico e continuo, ma il possesso di tali capacità consentirebbe agli scienziati di scalare gli algoritmi di apprendimento automatico a un ritmo più veloce e di adattarli facilmente per gestire ambienti in evoluzione e situazioni inaspettate. In sostanza, l’obiettivo di questi sistemi sarebbe quello di imitare un giorno le capacità di apprendimento degli esseri umani.

Gli algoritmi tradizionali di apprendimento automatico vengono addestrati attraverso tanti dati. Ma i risultati di questo team hanno dimostrato che fattori come la somiglianza dei compiti, le correlazioni negative e positive e persino l’ordine in cui un algoritmo viene istruito su un compito influiscono sul tempo in cui una macchina artificiale conserva determinate conoscenze.

Per esempio, per ottimizzare la memoria di un algoritmo è necessario insegnare compiti dissimili fin dalle prime fasi del processo di apprendimento continuo. Questo metodo espande la capacità della rete di recepire nuove informazioni e migliora la sua capacità di apprendere successivamente compiti più simili.

Il loro lavoro è così importante perché capire le somiglianze tra le macchine e il cervello umano aprirebbe la strada a una comprensione più profonda dell’AI.

Conlusioni

“Il nostro lavoro preannuncia una nuova era di macchine intelligenti in grado di apprendere e adattarsi come le loro controparti umane”, ha aggiunto.

Alessia Tomaselli
Laureata in Mediazione Linguistica per le lingue inglese e spagnolo, attualmente lavora come copywriter presso s-mart.biz, società leader nella sicurezza informatica.

Lista degli articoli

Articoli in evidenza

Skitnet: Il Malware che Sta Conquistando il Mondo del Ransomware

Gli esperti hanno lanciato l’allarme: i gruppi ransomware stanno utilizzando sempre più spesso il nuovo malware Skitnet (noto anche come Bossnet) per lo sfruttamento successivo delle ...

Bypass di Microsoft Defender mediante Defendnot: Analisi Tecnica e Strategie di Mitigazione

Nel panorama delle minacce odierne, Defendnot rappresenta un sofisticato malware in grado di disattivare Microsoft Defender sfruttando esclusivamente meccanismi legittimi di Windows. A differenza di a...

Falso Mito: Se uso una VPN, sono completamente al sicuro anche su reti WiFi Aperte e non sicure

Molti credono che l’utilizzo di una VPN garantisca una protezione totale durante la navigazione, anche su reti WiFi totalmente aperte e non sicure. Sebbene le VPN siano strumenti efficaci per c...

In Cina il CNVD premia i migliori ricercatori di sicurezza e la collaborazione tra istituzioni e aziende

Durante una conferenza nazionale dedicata alla sicurezza informatica, sono stati ufficialmente premiati enti, aziende e professionisti che nel 2024 hanno dato un contributo significativo al National I...

Quando l’MFA non basta! Abbiamo Violato il Login Multi-Fattore Per Capire Come Difenderci Meglio

Nel mondo della cybersecurity esiste una verità scomoda quanto inevitabile: per difendere davvero qualcosa, bisogna sapere come violarlo. L’autenticazione multi-fattore è una delle co...