Redazione RHC : 10 Settembre 2024 14:08
I ricercatori hanno sviluppato un nuovo metodo di attacco backdoor chiamato NoiseAttack, capace di compromettere più classi contemporaneamente con un minimo di configurazione. A differenza dei precedenti approcci che si concentrano su una singola classe, NoiseAttack utilizza la densità spettrale di potenza del rumore gaussiano bianco (WGN) come trigger invisibile durante la fase di addestramento.
I test sperimentali mostrano che NoiseAttack ottiene alti tassi di successo su diversi modelli e set di dati, eludendo i sistemi di rilevamento delle backdoor più avanzati.
Quando si parla di “più classi” in riferimento a NoiseAttack, si intende che l’attacco non si limita a colpire una sola categoria o classe di dati in un modello di classificazione. Invece, può prendere di mira contemporaneamente più classi, inducendo errori in varie categorie di output. Ciò significa che il modello può essere manipolato per commettere errori in diverse classificazioni contemporaneamente, rendendo l’attacco più versatile e potente.
CORSO NIS2 : Network and Information system 2
La direttiva NIS2 rappresenta una delle novità più importanti per la sicurezza informatica in Europa, imponendo nuovi obblighi alle aziende e alle infrastrutture critiche per migliorare la resilienza contro le cyber minacce.
Con scadenze stringenti e penalità elevate per chi non si adegua, comprendere i requisiti della NIS2 è essenziale per garantire la compliance e proteggere la tua organizzazione.
Accedi All'Anteprima del Corso condotto dall'Avv. Andrea Capelli sulla nostra Academy e segui l'anteprima gratuita.
Per ulteriori informazioni, scrivici ad [email protected] oppure scrivici su Whatsapp al 379 163 8765
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
Il rumore gaussiano bianco (WGN) utilizzato in NoiseAttack è impercettibile e applicato universalmente, ma attivato solo su campioni selezionati per indurre classificazioni errate su più etichette target.
Questo metodo consente un attacco backdoor multi-target su modelli di deep learning senza compromettere le prestazioni sugli input non compromessi.
Addestrando il modello su un dataset contaminato con WGN accuratamente applicato, gli avversari possono causare classificazioni errate intenzionali, superando le difese avanzate e offrendo grande flessibilità nel controllo delle etichette di destinazione.
Il framework elude efficacemente le difese all’avanguardia e raggiunge alti tassi di successo degli attacchi su vari set di dati e modelli. Introducendo rumore gaussiano bianco nelle immagini di input, NoiseAttack può classificarle erroneamente in etichette mirate senza influire in modo significativo sulle prestazioni del modello su dati puliti.
Attraverso analisi teoriche ed esperimenti approfonditi, gli autori dimostrano la fattibilità e l’ubiquità di questo attacco. NoiseAttack raggiunge alti tassi di successo medi degli attacchi su vari set di dati e modelli senza influire in modo significativo sulla precisione per le classi di non vittime.
Nella giornata odierna, il gruppo di hacker filorussi NoName057(16) ha lanciato un nuovo canale Telegram in lingua italiana. Il canale ha già visto la pubblicazione di diversi post riguardanti no...
Gli hacker di NoName057(16) riavviano le loro attività ostili contro diversi obiettivi italiani, attraverso attacchi di Distributed Denial-of-Service (DDoS). Questa volta la ritors...
Il Microsoft Threat Intelligence Center (MSTIC) ha scoperto una sofisticata campagna di phishing in corso che sfrutta gli inviti di Microsoft Teams per ottenere l’accesso non autorizzato agli a...
Negli ultimi anni, il conflitto tra Russia e i suoi oppositori non si è limitato al campo di battaglia tradizionale, ma ha coinvolto sempre di più il cyberspazio. Uno dei gruppi più att...
Il tribunale della contea di Wyoming ha chiesto una spiegazione da un gruppo di avvocati che hanno presentato alla corte falsi precedenti legali. Si è scoperto che gli avvocati utilizza...
Copyright @ 2003 – 2024 REDHOTCYBER Srl
PIVA 17898011006