Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Cerca
970x20 Itcentric
Banner Ransomfeed 320x100 1
Perché un Large Language Model (LLM) non è un Database?

Perché un Large Language Model (LLM) non è un Database?

Luca Vinciguerra : 16 Agosto 2024 10:10

Negli ultimi anni, con l’avvento di tecnologie avanzate come i Large Language Models (LLM), tra cui spiccano strumenti come ChatGPT, si è diffusa una certa confusione riguardo alla loro natura e alle loro funzionalità.

In particolare, molte persone tendono a considerare un LLM come un database molto evoluto, aspettandosi che fornisca informazioni accurate e aggiornate su richiesta, come farebbe un motore di ricerca o un archivio di dati strutturati. Tuttavia, è fondamentale chiarire che un LLM non è un database, né è progettato per fungere da tale.

Come fa un Large Language Model a generare il testo?

Un Large Language Model, come suggerisce il nome, è un modello addestrato su enormi quantità di testo per imparare le regolarità e le strutture linguistiche presenti nel linguaggio naturale. Quando interagiamo con un LLM, esso non “ricerca” informazioni in un archivio strutturato, ma genera risposte basandosi su un processo di previsione delle parole (più tecnicamente token). Questo processo si basa sull’addestramento del modello con grandi quantità di dati testuali, che gli consentono di “imparare” le probabilità di sequenze di parole.


Enterprise

Prova la Demo di Business Log! Adaptive SOC italiano
Log management non solo per la grande Azienda, ma una suite di Audit file, controllo USB, asset, sicurezza e un Security Operation Center PERSONALE, che ti riporta tutte le operazioni necessarie al tuo PC per tutelare i tuoi dati e informati in caso di problemi nel tuo ambiente privato o di lavoro. Scarica ora la Demo di Business Log per 30gg


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

Ad esempio, se chiediamo a un LLM “Chi è Sandro Pertini?”, il modello non cerca una biografia memorizzata su un server. Piuttosto, utilizza la sua comprensione delle relazioni tra le parole per generare una risposta che appare coerente e informativa, basandosi sulle probabilità che ha appreso durante l’addestramento. Il modello tenta di prevedere la sequenza di parole più probabili, dato l’input fornito. Ciò significa che il modello può produrre risposte convincenti, ma non garantisce che queste siano accurate o aggiornate, portando in alcuni casi a vere e proprie allucinazioni.

Per capire meglio come un LLM riesce a generare testo, immaginiamo di chiedere al modello di completare la frase: “Il gatto salta sul”.

  1. Input: “Il gatto salta sul”
    Il modello riceve questa sequenza di parole come input e, basandosi sull’addestramento ricevuto, prevede quale parola sia più probabile che segua. Considerando le parole “gatto” e “salta”, il modello potrebbe riconoscere che l’azione di saltare è spesso seguita da un complemento che indica una superficie.
  2. Prima Predizione: La parola successiva potrebbe essere quindi “tavolo”, “letto”, “sedia”, ecc. Supponiamo che il modello scelga “tavolo” come la parola con la probabilità più alta.
    Output parziale: “Il gatto salta sul tavolo”
  3. Seconda Predizione: Ora che il modello ha aggiunto “tavolo”, analizza di nuovo l’intera sequenza e prevede che la parola successiva potrebbe essere una parola come “per”, “dove”, “e”, ecc. Supponiamo scelga “e”.
    Output parziale: “Il gatto salta sul tavolo e”
  4. Terza Predizione: A questo punto, il modello potrebbe prevedere che la sequenza è seguita da un’altra azione correlata. Potrebbe quindi generare parole come “si sdraia”, “miagola”, “scappa”, ecc. Supponiamo che preveda “si sdraia”.
  5. Output finale: “Il gatto salta sul tavolo e si sdraia”

In questo esempio, il modello ha generato ogni parola successiva basandosi su ciò che ritiene più probabile, data la sequenza precedente ed il contesto appreso durante l’addestramento. Questo processo di predizione continua fino a quando il modello decide che la frase è completa o fino a un determinato limite di lunghezza della sequenza.

Inoltre, come si evince dall’esempio, la generazione di testo da parte di un LLM non avviene attraverso una ricerca attiva di informazioni su cosa fanno i gatti o su quale sia il comportamento più comune. Invece, il modello sceglie le parole successive in base alla probabilità determinata dai dati su cui è stato addestrato. La scelta di “tavolo” come parola successiva più probabile potrebbe essere stata veicolata dai numerosi esempi visti nell’addestramento in cui i gatti saltano su tavoli o altre superfici simili. Questa scelta non è basata su una comprensione concettuale del comportamento dei gatti, ma su un calcolo probabilistico che riflette i pattern linguistici presenti nei dati su cui il modello è stato addestrato. 

Questo sottolinea la differenza fondamentale tra un LLM e un database: il modello non “sa” nulla in senso tradizionale, ma genera risposte basandosi su ciò che è più probabile che segua un dato input, secondo i dati testuali che ha elaborato durante l’addestramento.

Cos’è il Cutoff Knowledge?

Un concetto chiave per comprendere le limitazioni di un LLM è quello del Cutoff Knowledge. Questo termine si riferisce al punto temporale fino al quale il modello è stato addestrato. Per esempio, se un LLM è stato addestrato su testi fino al 2021, non avrà conoscenza degli eventi o delle scoperte avvenute dopo quella data. Ciò evidenzia ulteriormente perché un LLM non può essere considerato un database: i database sono progettati per contenere informazioni aggiornate e possono essere costantemente alimentati con nuovi dati, mentre un LLM ha una base di conoscenza statica limitata al periodo di addestramento.

Questo taglio temporale implica che un LLM potrebbe fornire informazioni obsolete o inaccurate se interrogato su argomenti successivi alla data di cutoff. Mentre un database può essere aggiornato con nuovi dati, l’aggiornamento di un LLM richiede un nuovo ciclo di addestramento su dati più recenti, il che è un processo molto più complesso e costoso.

Conclusioni

In sintesi, un Large Language Model non è un database e non dovrebbe essere trattato come tale. Mentre entrambi gli strumenti possono essere utilizzati per rispondere a domande, lo fanno in modi completamente diversi. Un database recupera e restituisce dati puntuali, mentre un LLM genera testo basato su un’ampia comprensione del linguaggio naturale. Questo significa che, sebbene un LLM possa sembrare una fonte di informazioni, è importante usarlo con la consapevolezza delle sue limitazioni, specialmente quando si tratta di ottenere dati precisi e aggiornati.

Immagine del sitoLuca Vinciguerra
Machine Learning Engineer specializzato nel Natural Language Processing. Appassionato di Intelligenza Artificiale, Coding e tecnologia in generale. Aspetta l'avvento di Skynet.

Lista degli articoli

Articoli in evidenza

Immagine del sito
Notepad++ sotto attacco! Come una DLL fasulla apre la porta ai criminal hacker
Di Manuel Roccon - 05/11/2025

Nel mese di Settembre è uscita una nuova vulnerabilità che riguarda Notepad++. La vulnerabilità è stata identificata con la CVE-2025-56383 i dettagli possono essere consultati nel sito del NIST. L...

Immagine del sito
Pericolo per gli utenti OneDrive: le DLL infette si nascondono nei file condivisi
Di Redazione RHC - 05/11/2025

Gli aggressori stanno utilizzando una tecnica avanzata che implica il caricamento laterale di DLL tramite l’applicazione Microsoft OneDrive. In questo modo riescono ad eseguire codice malevolo senza...

Immagine del sito
Furto del Louvre: Windows 2000 e Windows XP nelle reti oltre che a password banali
Di Redazione RHC - 04/11/2025

I ladri sono entrati attraverso una finestra del secondo piano del Musée du Louvre, ma il museo aveva avuto anche altri problemi oltre alle finestre non protette, secondo un rapporto di audit sulla s...

Immagine del sito
Trump non vuole esportare i chip Nvidia. La Cina risponde: “Tranquilli, facciamo da soli”
Di Redazione RHC - 04/11/2025

Reuters ha riferito che Trump ha detto ai giornalisti durante un’intervista preregistrata nel programma “60 Minutes” della CBS e sull’Air Force One durante il viaggio di ritorno: “I chip pi�...

Immagine del sito
Hanyuan-1: il computer quantistico cinese che funziona a temperatura ambiente e sfida gli USA
Di Redazione RHC - 04/11/2025

Il primo computer quantistico atomico cinese ha raggiunto un importante traguardo commerciale, registrando le sue prime vendite a clienti nazionali e internazionali, secondo quanto riportato dai media...