Red Hot Cyber
La cybersecurity è condivisione. Riconosci il rischio, combattilo, condividi le tue esperienze ed incentiva gli altri a fare meglio di te.
Cerca

Perché un Large Language Model (LLM) non è un Database?

Luca Vinciguerra : 16 Agosto 2024 10:10

Negli ultimi anni, con l’avvento di tecnologie avanzate come i Large Language Models (LLM), tra cui spiccano strumenti come ChatGPT, si è diffusa una certa confusione riguardo alla loro natura e alle loro funzionalità.

In particolare, molte persone tendono a considerare un LLM come un database molto evoluto, aspettandosi che fornisca informazioni accurate e aggiornate su richiesta, come farebbe un motore di ricerca o un archivio di dati strutturati. Tuttavia, è fondamentale chiarire che un LLM non è un database, né è progettato per fungere da tale.

Come fa un Large Language Model a generare il testo?

Un Large Language Model, come suggerisce il nome, è un modello addestrato su enormi quantità di testo per imparare le regolarità e le strutture linguistiche presenti nel linguaggio naturale. Quando interagiamo con un LLM, esso non “ricerca” informazioni in un archivio strutturato, ma genera risposte basandosi su un processo di previsione delle parole (più tecnicamente token). Questo processo si basa sull’addestramento del modello con grandi quantità di dati testuali, che gli consentono di “imparare” le probabilità di sequenze di parole.


Vuoi diventare un esperto del Dark Web e della Cyber Threat Intelligence (CTI)?
Stiamo per avviare il corso intermedio in modalità "Live Class", previsto per febbraio.
A differenza dei corsi in e-learning, disponibili online sulla nostra piattaforma con lezioni pre-registrate, i corsi in Live Class offrono un’esperienza formativa interattiva e coinvolgente.
Condotti dal professor Pietro Melillo, le lezioni si svolgono online in tempo reale, permettendo ai partecipanti di interagire direttamente con il docente e approfondire i contenuti in modo personalizzato. Questi corsi, ideali per aziende, consentono di sviluppare competenze mirate, affrontare casi pratici e personalizzare il percorso formativo in base alle esigenze specifiche del team, garantendo un apprendimento efficace e immediatamente applicabile.

Contattaci tramite WhatsApp al 375 593 1011 per richiedere ulteriori informazioni oppure scriviti alla casella di posta [email protected]



Supporta RHC attraverso:
  • L'acquisto del fumetto sul Cybersecurity Awareness
  • Ascoltando i nostri Podcast
  • Seguendo RHC su WhatsApp
  • Seguendo RHC su Telegram
  • Scarica gratuitamente "Dark Mirror", il report sul ransomware di Dark Lab


  • Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.


    Ad esempio, se chiediamo a un LLM “Chi è Sandro Pertini?”, il modello non cerca una biografia memorizzata su un server. Piuttosto, utilizza la sua comprensione delle relazioni tra le parole per generare una risposta che appare coerente e informativa, basandosi sulle probabilità che ha appreso durante l’addestramento. Il modello tenta di prevedere la sequenza di parole più probabili, dato l’input fornito. Ciò significa che il modello può produrre risposte convincenti, ma non garantisce che queste siano accurate o aggiornate, portando in alcuni casi a vere e proprie allucinazioni.

    Per capire meglio come un LLM riesce a generare testo, immaginiamo di chiedere al modello di completare la frase: “Il gatto salta sul”.

    1. Input: “Il gatto salta sul”
      Il modello riceve questa sequenza di parole come input e, basandosi sull’addestramento ricevuto, prevede quale parola sia più probabile che segua. Considerando le parole “gatto” e “salta”, il modello potrebbe riconoscere che l’azione di saltare è spesso seguita da un complemento che indica una superficie.
    2. Prima Predizione: La parola successiva potrebbe essere quindi “tavolo”, “letto”, “sedia”, ecc. Supponiamo che il modello scelga “tavolo” come la parola con la probabilità più alta.
      Output parziale: “Il gatto salta sul tavolo”
    3. Seconda Predizione: Ora che il modello ha aggiunto “tavolo”, analizza di nuovo l’intera sequenza e prevede che la parola successiva potrebbe essere una parola come “per”, “dove”, “e”, ecc. Supponiamo scelga “e”.
      Output parziale: “Il gatto salta sul tavolo e”
    4. Terza Predizione: A questo punto, il modello potrebbe prevedere che la sequenza è seguita da un’altra azione correlata. Potrebbe quindi generare parole come “si sdraia”, “miagola”, “scappa”, ecc. Supponiamo che preveda “si sdraia”.
    5. Output finale: “Il gatto salta sul tavolo e si sdraia”

    In questo esempio, il modello ha generato ogni parola successiva basandosi su ciò che ritiene più probabile, data la sequenza precedente ed il contesto appreso durante l’addestramento. Questo processo di predizione continua fino a quando il modello decide che la frase è completa o fino a un determinato limite di lunghezza della sequenza.

    Inoltre, come si evince dall’esempio, la generazione di testo da parte di un LLM non avviene attraverso una ricerca attiva di informazioni su cosa fanno i gatti o su quale sia il comportamento più comune. Invece, il modello sceglie le parole successive in base alla probabilità determinata dai dati su cui è stato addestrato. La scelta di “tavolo” come parola successiva più probabile potrebbe essere stata veicolata dai numerosi esempi visti nell’addestramento in cui i gatti saltano su tavoli o altre superfici simili. Questa scelta non è basata su una comprensione concettuale del comportamento dei gatti, ma su un calcolo probabilistico che riflette i pattern linguistici presenti nei dati su cui il modello è stato addestrato. 

    Questo sottolinea la differenza fondamentale tra un LLM e un database: il modello non “sa” nulla in senso tradizionale, ma genera risposte basandosi su ciò che è più probabile che segua un dato input, secondo i dati testuali che ha elaborato durante l’addestramento.

    Cos’è il Cutoff Knowledge?

    Un concetto chiave per comprendere le limitazioni di un LLM è quello del Cutoff Knowledge. Questo termine si riferisce al punto temporale fino al quale il modello è stato addestrato. Per esempio, se un LLM è stato addestrato su testi fino al 2021, non avrà conoscenza degli eventi o delle scoperte avvenute dopo quella data. Ciò evidenzia ulteriormente perché un LLM non può essere considerato un database: i database sono progettati per contenere informazioni aggiornate e possono essere costantemente alimentati con nuovi dati, mentre un LLM ha una base di conoscenza statica limitata al periodo di addestramento.

    Questo taglio temporale implica che un LLM potrebbe fornire informazioni obsolete o inaccurate se interrogato su argomenti successivi alla data di cutoff. Mentre un database può essere aggiornato con nuovi dati, l’aggiornamento di un LLM richiede un nuovo ciclo di addestramento su dati più recenti, il che è un processo molto più complesso e costoso.

    Conclusioni

    In sintesi, un Large Language Model non è un database e non dovrebbe essere trattato come tale. Mentre entrambi gli strumenti possono essere utilizzati per rispondere a domande, lo fanno in modi completamente diversi. Un database recupera e restituisce dati puntuali, mentre un LLM genera testo basato su un’ampia comprensione del linguaggio naturale. Questo significa che, sebbene un LLM possa sembrare una fonte di informazioni, è importante usarlo con la consapevolezza delle sue limitazioni, specialmente quando si tratta di ottenere dati precisi e aggiornati.

    Luca Vinciguerra
    Machine Learning Engineer specializzato nel Natural Language Processing. Appassionato di Intelligenza Artificiale, Coding e tecnologia in generale. Aspetta l'avvento di Skynet.

    Lista degli articoli

    Articoli in evidenza

    CrowdStrike Global Threat Report 2025: l’anno dell’avversario intraprendente
    Di Redazione RHC - 15/08/2025

    CrowdStrike ha pubblicato il suo Global Threat Report 2025, che documenta un balzo in avanti nel comportamento dei criminali informatici e dei gruppi statali. Gli esperti definiscono il 2024 “l...

    Dopo il bucato, Figure 02 ora piega il bucato. Ma per ora dovrai continuare a farlo da solo
    Di Redazione RHC - 15/08/2025

    Solamente due settimane fa, il robot umanoide prodotto da Figure ha destato in noi grande meraviglia, quando con destrezza ha preso degli indumenti da un paniere dei panni sporchi e li ha collocati al...

    Hai risposto su Teams al supporto IT? Complimenti! Il Trojan è nel PC con diritti superiori ai tuoi
    Di Redazione RHC - 15/08/2025

    Il team di ricerca di Trustwave SpiderLabs ha identificato una nuova ondata di attacchi EncryptHub che combinano l’errore umano e lo sfruttamento di una vulnerabilità nella Microsoft Manag...

    È bastata una ん di troppo! Phishing che impersona Booking.com con la tecnica degli omoglifi
    Di Redazione RHC - 15/08/2025

    Gli aggressori hanno iniziato a utilizzare un trucco insolito per mascherare i link di phishing, facendoli apparire come indirizzi di Booking.com. La nuova campagna malware utilizza il carattere hirag...

    Bug da Oscar (score 10) per Cisco Secure Firewall Management Center
    Di Redazione RHC - 15/08/2025

    Una falla di sicurezza critica è stata resa pubblica da Cisco nel suo software Secure Firewall Management Center (FMC), permettendo potenzialmente a malintenzionati non autenticati di eseguire, a...