Red Hot Cyber
La cybersecurity è condivisione. Riconosci il rischio, combattilo, condividi le tue esperienze ed incentiva gli altri a fare meglio di te.
Cerca

Architettura delle Convolutional Neural Networks: dal Pixel alla classificazione

Simone Raponi : 1 Agosto 2023 10:49

Nell’ultimo articolo, abbiamo introdotto le Convolutional Neural Networks (CNN), un’innovazione cruciale nel campo dell’intelligenza artificiale che ha rivoluzionato il riconoscimento di immagini e suoni. Adesso, è tempo di esaminare più da vicino come queste affascinanti reti lavorano dietro le quinte, le black box non ci sono mai piaciute!

Questo articolo esplora l’architettura delle CNN, il flusso dei dati attraverso la rete e il processo di estrazione e interpretazione delle caratteristiche rilevanti dai dati in ingresso.

Per i prossimi paragrafi utilizzeremo l’architettura di seguito come esempio:

Architettura di una CNN per un’applicazione reale: Sound of Guns

Prompt Engineering & Sicurezza: diventa l’esperto che guida l’AI

Vuoi dominare l’AI generativa e usarla in modo sicuro e professionale? Con il Corso Prompt Engineering: dalle basi alla cybersecurity, guidato da Luca Vinciguerra, data scientist ed esperto di sicurezza informatica, impari a creare prompt efficaci, ottimizzare i modelli linguistici e difenderti dai rischi legati all’intelligenza artificiale. Un percorso pratico e subito spendibile per distinguerti nel mondo del lavoro.
Non restare indietro: investi oggi nelle tue competenze e porta il tuo profilo professionale a un nuovo livello.
Guarda subito l'anteprima gratuita del corso su academy.redhotcyber.com
Contattaci per ulteriori informazioni tramite WhatsApp al 375 593 1011 oppure scrivi a [email protected]



Supporta RHC attraverso:
 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.
 

Ho sviluppato questa architettura durante il mio dottorato di ricerca per il progetto Sound of Guns: Digital Forensics of Gun Audio Samples meets Artificial Intelligence. In tale progetto, la CNN in questione è stata utilizzata per classificare tipo, modello e calibro di armi da fuoco a partire dallo spettrogramma della registrazione del colpo.

Strati Convoluzionali – Il cuore delle CNN

Le CNN prendono il nome da una delle loro caratteristiche fondamentali: lo strato convoluzionale. Questo strato è il nucleo dell’apprendimento della rete, il luogo in cui le caratteristiche (o “pattern”) dei dati vengono effettivamente riconosciute.

In uno strato convoluzionale (in giallo, nella figura di riferimento), l’immagine di input viene suddivisa in diverse regioni sovrapposte. Ciascuna di queste regioni viene poi trasformata da una serie di “filtri” o “kernel”, matrici di numeri che alterano i dati dell’immagine. Ogni filtro è progettato per rilevare una caratteristica specifica nell’immagine, come un bordo, una linea o un angolo. L’output di questo processo è una serie di “mappe delle caratteristiche”, rappresentazioni dell’immagine originale che evidenziano le aree in cui è stata rilevata una particolare caratteristica.

Strati di Pooling – Riduzione della dimensionalità

Dopo che le immagini sono state filtrate attraverso lo strato convoluzionale, arrivano allo strato di pooling (in arancio, nella figura di riferimento). Lo scopo di questo strato è ridurre la dimensione delle mappe delle caratteristiche senza perdere le informazioni importanti. Questo processo di “sottocampionamento” rende l’intera rete più efficiente, riducendo il numero di parametri da calcolare.

Esistono diversi metodi di pooling, ma il più comune è il “max pooling”, che prende il valore massimo da una regione della mappa delle caratteristiche. Questo significa che, indipendentemente da dove una caratteristica viene rilevata all’interno di una certa regione, essa sarà preservata nello strato di pooling.

Esempio di applicazione di max-pooling 2×2. L’immagine risultante manterrà le caratteristiche principali ma avrà una dimensione ridotta.

Strati Fully Connected – Interpretazione delle caratteristiche

Dopo che i dati sono stati processati attraverso gli strati convoluzionali e di pooling, entrano negli strati “fully connected” o “densi” (in viola, nella figura di riferimento). Come suggerisce il nome, in questi strati ogni neurone è connesso a ogni altro neurone nello strato precedente e nel successivo.

Qui, le mappe delle caratteristiche vengono “appiattite” in un vettore unidimensionale che può essere alimentato attraverso la rete neurale. Lo scopo di questi strati è interpretare le caratteristiche rilevate nelle fasi precedenti e combinare queste informazioni in una previsione finale. Ad esempio, in un problema di riconoscimento di immagini, questo potrebbe significare decidere se l’immagine rappresenta un gatto o un cane.

Strato di output e funzione di attivazione

L’ultimo strato di una CNN è lo strato di output (in blu, nella figura di riferimento). Questo strato è responsabile della produzione della previsione finale della rete. In un problema di classificazione, ogni neurone in questo strato rappresenta una possibile etichetta che la rete può prevedere, e la funzione di attivazione viene utilizzata per convertire l’output della rete in una distribuzione di probabilità tra queste etichette.

Le funzioni di attivazione più comuni negli strati di output delle CNN sono la funzione softmax per la classificazione multiclasse e la funzione sigmoide per la classificazione binaria. Entrambe queste funzioni comprimono l’output della rete in un intervallo che è utile per l’interpretazione delle previsioni.

Conclusioni

Le Convolutional Neural Networks sono uno strumento potente nel riconoscimento di immagini e suoni, grazie alla loro capacità di apprendere gerarchie di caratteristiche spaziali. A partire dal riconoscimento di caratteristiche locali o globali nello strato convoluzionale, passando per la riduzione della dimensionalità nello strato di pooling, fino all’interpretazione delle caratteristiche negli strati fully connected, ogni elemento dell’architettura CNN svolge un ruolo chiave nel processo di apprendimento.

Nel nostro prossimo articolo, esploreremo come le CNN vengono addestrate e ottimizzate, gettando luce sul processo di backpropagation e discutendo le tecniche comuni per l’ottimizzazione delle reti neurali.

Simone Raponi
Esperto in machine learning e sicurezza informatica. Ha un dottorato in Computer Science and Engineering, durante il quale ha sviluppato modelli di intelligenza artificiale per rilevare pattern correlati alla cybersecurity. Durante la sua carriera accademica ha ricevuto diversi riconoscimenti ed ha pubblicato numerosi articoli scientifici divenuti popolari nell'ambito. Ex Machine Learning Scientist alla NATO, attualmente lavora come AI/ML Cybersecurity Engineer per una startup, dove impiega quotidianamente algoritmi di AI per affrontare e risolvere complesse sfide nel campo dell'automazione della sicurezza informatica.

Lista degli articoli

Articoli in evidenza

Questo ennesimo articolo “contro” ChatControl sarà assolutamente inutile?
Di Stefano Gazzella - 18/09/2025

Avevamo già parlato della proposta di regolamento “ChatControl” quasi due anni fa, ma vista la roadmap che è in atto ci troviamo nell’imbarazzo di doverne parlare nuovamente. Sembra però un d...

RHC intervista ShinyHunters: “I sistemi si riparano, le persone restano vulnerabili!”
Di RHC Dark Lab - 17/09/2025

ShinyHunters è un gruppo noto per il coinvolgimento in diversi attacchi informatici di alto profilo. Formatosi intorno al 2020, il gruppo ha guadagnato notorietà attraverso una serie di attacchi mir...

Chat Control: tra caccia ai canali illegali e freno a mano su libertà e privacy
Di Sandro Sana - 16/09/2025

La notizia è semplice, la tecnologia no. Chat Control (CSAR) nasce per scovare CSAM e dinamiche di grooming dentro le piattaforme di messaggistica. La versione “modernizzata” rinuncia alla backdo...

Great Firewall sotto i riflettori: il leak che svela l’industrializzazione della censura cinese
Di Redazione RHC - 16/09/2025

A cura di Luca Stivali e Olivia Terragni. L’11 settembre 2025 è esploso mediaticamente,  in modo massivo e massiccio,  quello che può essere definito il più grande leak mai subito dal Great Fir...

Violazione del Great Firewall of China: 500 GB di dati sensibili esfiltrati
Di Redazione RHC - 15/09/2025

Una violazione di dati senza precedenti ha colpito il Great Firewall of China (GFW), con oltre 500 GB di materiale riservato che è stato sottratto e reso pubblico in rete. Tra le informazioni comprom...