Redazione RHC : 13 Settembre 2024 12:31
Gli esperti hanno dimostrato l’attacco “sonoro” PIXHELL, che consente di estrarre dati da macchine isolate. I ricercatori hanno proposto di creare modelli di pixel specifici sui monitor LCD, provocando così la comparsa di rumore nell’intervallo 0-22 kHz, in cui potrebbero essere codificati i dati desiderati.
L’attacco PIXHELL è stato sviluppato dallo specialista israeliano di sicurezza informatica Dr. Mordechai Guri, capo del dipartimento di ricerca e sviluppo presso il centro di ricerca sulla sicurezza informatica dell’Università Ben-Gurion.
Più recentemente abbiamo parlato di un altro dei suoi progetti, l’attacco RAMBO (Radiation of Air-gapped Memory Bus for Offense), progettato per rubare dati dalle macchine protette attraverso la radiazione elettromagnetica della RAM. Altri sviluppi simili realizzati da specialisti dell’Università Ben-Gurion sono elencati alla fine della pubblicazione.
CALL FOR SPONSOR - Sponsorizza l'ottavo episodio della serie Betti-RHC
Sei un'azienda innovativa, che crede nella diffusione di concetti attraverso metodi "non convenzionali"?
Conosci il nostro corso sul cybersecurity awareness a fumetti?
Red Hot Cyber sta ricercando un nuovo sponsor per una nuova puntata del fumetto Betti-RHC mentre il team è impegnato a realizzare 3 nuovi episodi che ci sono stati commissionati.
Contattaci tramite WhatsApp al numero 375 593 1011 per richiedere ulteriori informazioni oppure alla casella di posta [email protected]
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
Nell’attacco PIXHELL, i pattern di pixel richiesti vengono creati da uno speciale malware sviluppato da esperti. Il rumore risultante nell’intervallo 0-22 kHz può essere intercettato dai dispositivi vicini, anche i più semplici (ad esempio gli smartphone).
PIXHELL sfrutta i segnali acustici casuali che inevitabilmente si presentano durante il funzionamento dei monitor LCD: coil whine , rumore dei condensatori e vibrazioni interne che non possono essere eliminate fisicamente.
Allo stesso tempo, le frequenze sonore sfruttate dall’attacco sono praticamente indistinguibili dall’udito umano. Pertanto, i ricercatori notano che una persona di solito percepisce i suoni nell’intervallo di frequenza da 20 Hz a 20 kHz e il limite superiore è solitamente 15-17 kHz.
Inoltre, i modelli di pixel utilizzati nell’attacco sono a bassa luminosità e praticamente invisibili all’utente.
I test condotti dai ricercatori hanno dimostrato che la trasmissione dei dati da una macchina isolata è possibile ad una distanza massima di 2 metri e che la velocità di trasferimento delle informazioni sarà di circa 20 bit al secondo.
Poiché è troppo lento trasferire file di grandi dimensioni, gli esperti scrivono che l’attacco è più adatto a intercettare le sequenze di tasti in tempo reale o a rubare piccoli file di testo che potrebbero contenere password e altri dati.
Creato da esperti, il malware può codificare informazioni sensibili (chiavi di crittografia o sequenze di tasti) in segnali acustici utilizzando i seguenti schemi.
I dati vengono quindi trasmessi attraverso il monitor LCD modificando la configurazione dei pixel su di esso, modificando così i segnali audio provenienti dai componenti del dispositivo. Un microfono vicino (ad esempio in un laptop o uno smartphone) può ricevere segnali e successivamente trasmetterli a un aggressore per la successiva demodulazione.
Il rapporto dei ricercatori sottolinea che PIXHELL può funzionare anche in condizioni in cui esiste un solo destinatario per più fonti di segnale. Ciò significa che se il malware penetra in più sistemi protetti contemporaneamente, l’aggressore può intercettarne i segreti contemporaneamente.
Per proteggersi da PIXHELL e altri tipi di attacchi “audio” sul canale laterale, i ricercatori suggeriscono di utilizzare diversi metodi.
Pertanto, in ambienti critici, si consiglia di vietare completamente l’uso dei microfoni in determinate aree per motivi di sicurezza. Anche la generazione di rumore risolve il problema, poiché il rumore di fondo viene utilizzato per sopprimere qualsiasi segnale audio, rendendo impraticabile un simile attacco.
Inoltre, Mordechai Guri suggerisce di monitorare il buffer dello schermo utilizzando una fotocamera, che rileverà modelli di pixel insoliti che non corrispondono al normale funzionamento del sistema.
Altri attacchi in side channel sviluppati dagli scienziati dell’Università Ben-Gurion includono quanto segue:
Un elenco completo dei documenti di ricerca degli attacchi in side-channel, degli esperti di compromissione delle macchine presenti nelle reti air-gap potete trovarlo qui.
Sasha Levin, sviluppatore di kernel Linux di lunga data, che lavora presso NVIDIA e in precedenza presso Google e Microsoft, ha proposto di aggiungere alla documentazione del kernel regole formali per...
Google sta trasformando il suo motore di ricerca in una vetrina per l’intelligenza artificiale, e questo potrebbe significare un disastro per l’intera economia digitale. Secondo un nuovo...
Il panorama delle minacce non dorme mai, ma stavolta si è svegliato con il botto. Il 18 luglio 2025, l’azienda di sicurezza Eye Security ha lanciato un allarme che ha subito trovato eco ne...
Nel corso di un’operazione internazionale coordinata, denominata “Operation Checkmate”, le forze dell’ordine hanno sferrato un duro colpo al gruppo ransomware BlackSuit (qu...
Il Dipartimento di Giustizia degli Stati Uniti ha segnalato lo smantellamento di quattro piattaforme darknet utilizzate per la distribuzione di materiale pedopornografico. Contemporaneamente, un dicio...
Iscriviti alla newsletter settimanale di Red Hot Cyber per restare sempre aggiornato sulle ultime novità in cybersecurity e tecnologia digitale.
Copyright @ REDHOTCYBER Srl
PIVA 17898011006