Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Condividi la tua difesa. Incoraggia l'eccellenza.
La vera forza della cybersecurity risiede
nell'effetto moltiplicatore della conoscenza.
HackTheBox 970x120 1
Banner Ancharia Mobile 1
Che cos’è una rete neurale? Scopri la tecnologia all’interno dell’intelligenza artificiale

Che cos’è una rete neurale? Scopri la tecnologia all’interno dell’intelligenza artificiale

28 Luglio 2023 08:17

Nel panorama tecnologico contemporaneo, un termine si staglia con prepotenza sul resto: la rete neurale. Fondamento dell’intelligenza artificiale, le reti neurali rappresentano il futuro del nostro modo di interagire con la tecnologia. Ma che cos’è esattamente una rete neurale?

Iniziamo il nostro viaggio.

Definizione di una rete neurale

Una rete neurale è un modello di calcolo ispirato al funzionamento del cervello umano. Questa similitudine non si limita a una semplice metafora: come il nostro cervello è composto da neuroni interconnessi, così una rete neurale è composta da unità di calcolo, o “neuroni artificiali”, organizzati in diversi strati.


Cyber Offensive Fundamentale Ethical Hacking 02

Avvio delle iscrizioni al corso Cyber Offensive Fundamentals
Vuoi smettere di guardare tutorial e iniziare a capire davvero come funziona la sicurezza informatica?
La base della sicurezza informatica, al di là di norme e tecnologie, ha sempre un unico obiettivo: fermare gli attacchi dei criminali informatici. Pertanto "Pensa come un attaccante, agisci come un difensore". Ti porteremo nel mondo dell'ethical hacking e del penetration test come nessuno ha mai fatto prima. Per informazioni potete accedere alla pagina del corso oppure contattarci tramite WhatsApp al numero 379 163 8765 oppure scrivendoci alla casella di posta [email protected].


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

Ogni neurone riceve dei dati in input, esegue una serie di calcoli su questi dati e fornisce un risultato in output, che può essere utilizzato come input per i neuroni dello strato successivo.

Neurone in biologia
Neurone in Intelligenza Artificiale

Le reti neurali sono alla base di molte applicazione di intelligenza artificiale. La loro capacità di “apprendere” dai dati e di migliorare le loro prestazioni nel tempo le rende uno strumento fondamentale in numerosi ambiti, dalla visione artificiale, alla traduzione automatica, alla previsione dei dati.

Il funzionamento delle reti neurali

Le reti neurali imparano attraverso un processo noto come “addestramento”. Questo processo può essere suddiviso in due fasi principali: la fase di propagazione in avanti e la fase di retropropagazione.

Durante la fase di propagazione in avanti (forward propagation), la rete neurale riceve i dati di input e, attraverso una serie di calcoli, genera una previsione o un output. Ad esempio, immaginiamo una rete neurale che sta cercando di identificare immagini di gatti. L’input sarà un insieme di pixel che rappresenta l’immagine, e la rete neurale cercherà di elaborare questi dati per determinare se l’immagine rappresenta un gatto o meno.

In ogni neurone, l’input viene combinato con un peso (che rappresenta l’importanza relativa di quell’input) e poi viene processato attraverso una funzione di attivazione, che determina l’output del neurone.

Una volta generata l’output, entra in gioco la fase di retropropagazione (backpropagation). Durante la retropropagazione, la rete neurale confronta l’output generato con l’output desiderato (ossia, la risposta corretta). Nel nostro esempio, se la rete neurale ha identificato correttamente l’immagine come un gatto, allora l’errore sarà basso; se invece ha sbagliato, l’errore sarà alto.

Questo errore viene quindi utilizzato per aggiustare i pesi di ciascun neurone, in modo da ridurre l’errore nelle previsioni future. Il nostro sistema diventa così più efficace nel riconoscere gatti nelle immagini future.

Questo ciclo di propagazione in avanti e retropropagazione continua per un certo numero di iterazioni, o “epoche”, fino a quando la rete neurale non è più in grado di migliorare significativamente le sue previsioni.

Un aspetto da sottolineare è che l’addestramento di una rete neurale richiede una grande quantità di dati e risorse di calcolo. Questo può rendere l’addestramento di reti neurali un compito impegnativo, in particolare per reti molto profonde o per problemi molto complessi.

Per un approfondimento tecnico, consiglio di leggere l’ottimo paragrafo di Michael Nielsen.

Conclusioni

Esplorando le reti neurali, ci siamo immersi in un universo affascinante, dove la tecnologia cerca di emulare il funzionamento del cervello umano per risolvere problemi complessi. Questi potenti strumenti di apprendimento automatico stanno spalancando porte prima impensabili, rivoluzionando campi che vanno dalla visione artificiale alla traduzione automatica, dalla diagnosi medica alla guida autonoma dei veicoli.

È vero, l’addestramento di una rete neurale richiede risorse considerevoli e una grande quantità di dati. È anche vero che l’implementazione di queste tecnologie presenta sfide ardue, richiedendo una comprensione approfondita sia del modello della rete neurale che dei dati con cui si sta lavorando. Ma non c’è innovazione senza sfida, non c’è progresso senza impegno.

Le reti neurali, con la loro stupefacente capacità di apprendere e adattarsi, rappresentano la punta di diamante dell’Intelligenza Artificiale. Stiamo solamente iniziando a intuire l’incredibile potenziale di questa tecnologia, e il cammino verso il futuro promette di essere ricco di scoperte rivoluzionarie.

Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Simone Raponi 300x300
Esperto in machine learning e sicurezza informatica. Ha un dottorato in Computer Science and Engineering, durante il quale ha sviluppato modelli di intelligenza artificiale per rilevare pattern correlati alla cybersecurity. Durante la sua carriera accademica ha ricevuto diversi riconoscimenti ed ha pubblicato numerosi articoli scientifici divenuti popolari nell'ambito. Ex Machine Learning Scientist alla NATO, attualmente lavora come AI/ML Cybersecurity Engineer per una startup, dove impiega quotidianamente algoritmi di AI per affrontare e risolvere complesse sfide nel campo dell'automazione della sicurezza informatica.

Articoli in evidenza

Immagine del sitoVulnerabilità
Le AI stanno diventando “vettori Zero-Day”! il 2026 sarà l’anno del caos digitale?
Redazione RHC - 02/01/2026

Fino a poco tempo fa, le vulnerabilità zero-day sembravano artefatti esotici provenienti dal mondo delle operazioni speciali e dello spionaggio. Ora sono uno strumento comune per hackerare le reti aziendali, e non solo perché gli…

Immagine del sitoCultura
66 anni e ancora imbattibile: come il COBOL domina silenziosamente il mondo bancario
Redazione RHC - 02/01/2026

Mentre il settore dibatte su quale rete neurale sia la “più intelligente” e quale framework sia il “più moderno”, tecnologie vecchie di decenni continuano a turbinare silenziosamente sotto la superficie del settore bancario. Quest’anno, COBOL…

Immagine del sitoCultura
Al via il corso “Cyber Offensive Fundamentals” di RHC! 40 ore in Live Class
Redazione RHC - 02/01/2026

Vuoi smettere di guardare tutorial e iniziare a capire davvero come funziona la sicurezza informatica? Se la risposta è SI, ti consigliamo di leggere questo articolo. Il panorama della sicurezza informatica cambia velocemente: nuove vulnerabilità,…

Immagine del sitoInnovazione
IA, l’allarme del Nobel Hinton: “Addio a migliaia di posti di lavoro già nel 2026”
Redazione RHC - 02/01/2026

Il professore di informatica Geoffrey Hinton, uno dei fondatori delle moderne tecnologie di intelligenza artificiale, ha affermato che l’IA potrebbe portare a perdite di posti di lavoro su larga scala già nel 2026. Secondo lui,…

Immagine del sitoDiritti
Il Chat Control e l’impatto della proposta CSAR nel sistema del DSA
Paolo Galdieri - 01/01/2026

Prima di addentrarci nell’analisi, è bene precisare che questo contributo è la prima parte di una ricerca più estesa. Nel prossimo articolo esploreremo il conflitto tra algoritmi di rilevazione automatica e crittografia end-to-end (E2EE), analizzando…