
Simone Raponi : 28 Luglio 2023 08:17
Nel panorama tecnologico contemporaneo, un termine si staglia con prepotenza sul resto: la rete neurale. Fondamento dell’intelligenza artificiale, le reti neurali rappresentano il futuro del nostro modo di interagire con la tecnologia. Ma che cos’è esattamente una rete neurale?
Iniziamo il nostro viaggio.
Una rete neurale è un modello di calcolo ispirato al funzionamento del cervello umano. Questa similitudine non si limita a una semplice metafora: come il nostro cervello è composto da neuroni interconnessi, così una rete neurale è composta da unità di calcolo, o “neuroni artificiali”, organizzati in diversi strati.
CVE Enrichment Mentre la finestra tra divulgazione pubblica di una vulnerabilità e sfruttamento si riduce sempre di più, Red Hot Cyber ha lanciato un servizio pensato per supportare professionisti IT, analisti della sicurezza, aziende e pentester: un sistema di monitoraggio gratuito che mostra le vulnerabilità critiche pubblicate negli ultimi 3 giorni dal database NVD degli Stati Uniti e l'accesso ai loro exploit su GitHub.
Cosa trovi nel servizio: ✅ Visualizzazione immediata delle CVE con filtri per gravità e vendor. ✅ Pagine dedicate per ogni CVE con arricchimento dati (NIST, EPSS, percentile di rischio, stato di sfruttamento CISA KEV). ✅ Link ad articoli di approfondimento ed exploit correlati su GitHub, per ottenere un quadro completo della minaccia. ✅ Funzione di ricerca: inserisci un codice CVE e accedi subito a insight completi e contestualizzati.
Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì. |
Ogni neurone riceve dei dati in input, esegue una serie di calcoli su questi dati e fornisce un risultato in output, che può essere utilizzato come input per i neuroni dello strato successivo.


Le reti neurali sono alla base di molte applicazione di intelligenza artificiale. La loro capacità di “apprendere” dai dati e di migliorare le loro prestazioni nel tempo le rende uno strumento fondamentale in numerosi ambiti, dalla visione artificiale, alla traduzione automatica, alla previsione dei dati.
Le reti neurali imparano attraverso un processo noto come “addestramento”. Questo processo può essere suddiviso in due fasi principali: la fase di propagazione in avanti e la fase di retropropagazione.
Durante la fase di propagazione in avanti (forward propagation), la rete neurale riceve i dati di input e, attraverso una serie di calcoli, genera una previsione o un output. Ad esempio, immaginiamo una rete neurale che sta cercando di identificare immagini di gatti. L’input sarà un insieme di pixel che rappresenta l’immagine, e la rete neurale cercherà di elaborare questi dati per determinare se l’immagine rappresenta un gatto o meno.
In ogni neurone, l’input viene combinato con un peso (che rappresenta l’importanza relativa di quell’input) e poi viene processato attraverso una funzione di attivazione, che determina l’output del neurone.
Una volta generata l’output, entra in gioco la fase di retropropagazione (backpropagation). Durante la retropropagazione, la rete neurale confronta l’output generato con l’output desiderato (ossia, la risposta corretta). Nel nostro esempio, se la rete neurale ha identificato correttamente l’immagine come un gatto, allora l’errore sarà basso; se invece ha sbagliato, l’errore sarà alto.
Questo errore viene quindi utilizzato per aggiustare i pesi di ciascun neurone, in modo da ridurre l’errore nelle previsioni future. Il nostro sistema diventa così più efficace nel riconoscere gatti nelle immagini future.
Questo ciclo di propagazione in avanti e retropropagazione continua per un certo numero di iterazioni, o “epoche”, fino a quando la rete neurale non è più in grado di migliorare significativamente le sue previsioni.
Un aspetto da sottolineare è che l’addestramento di una rete neurale richiede una grande quantità di dati e risorse di calcolo. Questo può rendere l’addestramento di reti neurali un compito impegnativo, in particolare per reti molto profonde o per problemi molto complessi.
Per un approfondimento tecnico, consiglio di leggere l’ottimo paragrafo di Michael Nielsen.
Esplorando le reti neurali, ci siamo immersi in un universo affascinante, dove la tecnologia cerca di emulare il funzionamento del cervello umano per risolvere problemi complessi. Questi potenti strumenti di apprendimento automatico stanno spalancando porte prima impensabili, rivoluzionando campi che vanno dalla visione artificiale alla traduzione automatica, dalla diagnosi medica alla guida autonoma dei veicoli.
È vero, l’addestramento di una rete neurale richiede risorse considerevoli e una grande quantità di dati. È anche vero che l’implementazione di queste tecnologie presenta sfide ardue, richiedendo una comprensione approfondita sia del modello della rete neurale che dei dati con cui si sta lavorando. Ma non c’è innovazione senza sfida, non c’è progresso senza impegno.
Le reti neurali, con la loro stupefacente capacità di apprendere e adattarsi, rappresentano la punta di diamante dell’Intelligenza Artificiale. Stiamo solamente iniziando a intuire l’incredibile potenziale di questa tecnologia, e il cammino verso il futuro promette di essere ricco di scoperte rivoluzionarie.
Simone Raponi
L’attuale accelerazione normativa in materia di cybersicurezza non è un fenomeno isolato, ma il culmine di un percorso di maturazione del Diritto penale che ha dovuto confrontarsi con la dematerial...

Sempre più amministrazioni avviano simulazioni di campagne di phishing per misurare la capacità dei propri dipendenti di riconoscere i messaggi sospetti. Quando queste attività coinvolgono struttur...

I criminali informatici non hanno più bisogno di convincere ChatGPT o Claude Code a scrivere malware o script per il furto di dati. Esiste già un’intera classe di modelli linguistici specializzati...

Un gruppo di membri del Parlamento europeo hanno chiesto di abbandonare l’uso interno dei prodotti Microsoft e di passare a soluzioni europee. La loro iniziativa nasce dalle crescenti preoccupazioni...

Ciao a tutti… mi chiamo Marco, ho 37 anni e lavoro come impiegato amministrativo in uno studio commerciale. È la prima volta che parlo davanti a tutti voi e sono un pò emozionato … e vi assicuro...