Red Hot Cyber
Sicurezza Informatica, Notizie su Cybercrime e Analisi Vulnerabilità

Il Futuro Energetico dell’Intelligenza Artificiale Generativa: Una Prospettiva Critica

9 Marzo 2024 22:22

Le previsioni sulla crescente domanda di energia dell’intelligenza artificiale generativa entro la fine del 2023 rimangono incerte, con una vasta gamma di stime e speculazioni. Titoli e rapporti professionali suggeriscono varie ipotesi, ma pochi dati concreti sono disponibili per guidare le previsioni.

Perché l’Intelligenza Artificiale Generativa Richiede così Tante Risorse?

L’analisi del costo del carbonio associato all’addestramento e all’inferenza dei modelli di intelligenza artificiale ha rivelato cifre significative. Secondo alcune stime, l’addestramento di modelli di grandi dimensioni potrebbe comportare emissioni di anidride carbonica molto importanti, sollevando interrogativi sull’impronta ambientale di tali attività.

Una serie di fattori contribuiscono all’elevato consumo energetico dell’intelligenza artificiale. Si tratta della dimensione del set di dati, del numero di parametri utilizzati, dell’architettura del modello, del tempo di elaborazione e di altri parametri. Ad esempio, modelli linguistici di grandi dimensioni richiedono enormi quantità di dati di addestramento e un numero considerevole di parametri per garantire risultati accurati.

Implicazioni per i Data Center

Contrariamente alle aspettative, la quantità di dati di addestramento non rappresenta necessariamente una sfida significativa per i data center. Modelli come ChatGPT-3 sono addestrati su vasti dataset senza un impatto significativo sull’infrastruttura dei data center. Tuttavia, il numero crescente di parametri nei modelli di intelligenza artificiale e la complessità delle architetture richiedono una maggiore potenza di calcolo e quindi un aumento del consumo energetico.

I modelli di intelligenza artificiale generativa utilizzano un numero impressionante di parametri durante l’addestramento. Ad esempio, ChatGPT-3 è basato su 175 miliardi di parametri, e si prevede che il numero di parametri continuerà ad aumentare con il tempo. L’architettura Transformer, ampiamente utilizzata nei modelli di intelligenza artificiale, richiede un ciclo di feedback continuo che aumenta ulteriormente i requisiti di potenza di calcolo.

Il Consumo Energetico in Aumento

Con l’intelligenza artificiale che diventa sempre più pervasiva nella società, la domanda di energia destinata al machine learning e all’intelligenza artificiale è destinata a crescere rapidamente. Si prevede che entro il 2030, l’intelligenza artificiale rappresenterà una percentuale significativa della domanda globale di elettricità. Tuttavia, la mancanza di dati completi rende difficile stimare l’impatto totale del settore sull’ambiente e sull’infrastruttura energetica.

Mentre il settore dell’intelligenza artificiale continua a evolversi, è fondamentale considerare le implicazioni energetiche delle sue applicazioni. I data center e le infrastrutture IT dovranno adattarsi per soddisfare la crescente domanda di energia, bilanciando l’efficienza operativa con la sostenibilità ambientale. L’analisi e la gestione proattiva del consumo energetico dell’intelligenza artificiale saranno cruciali per affrontare le sfide future e garantire un futuro sostenibile per l’innovazione tecnologica.

Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Silvia Felici 150x150
Red Hot Cyber Security Advisor, Open Source e Supply Chain Network. Attualmente presso FiberCop S.p.A. in qualità di Network Operations Specialist, coniuga la gestione operativa di infrastrutture di rete critiche con l'analisi strategica della sicurezza digitale e dei flussi informativi.
Aree di competenza: Network Operations, Open Source, Supply Chain Security, Innovazione Tecnologica, Sistemi Operativi.
Visita il sito web dell'autore

Articoli in evidenza

Immagine del sitoInnovazione
Robot in cerca di carne: Quando l’AI affitta periferiche. Il tuo corpo!
Silvia Felici - 06/02/2026

L’evoluzione dell’Intelligenza Artificiale ha superato una nuova, inquietante frontiera. Se fino a ieri parlavamo di algoritmi confinati dietro uno schermo, oggi ci troviamo di fronte al concetto di “Meatspace Layer”: un’infrastruttura dove le macchine non…

Immagine del sitoCybercrime
DKnife: il framework di spionaggio Cinese che manipola le reti
Pietro Melillo - 06/02/2026

Negli ultimi anni, la sicurezza delle reti ha affrontato minacce sempre più sofisticate, capaci di aggirare le difese tradizionali e di penetrare negli strati più profondi delle infrastrutture. Un’analisi recente ha portato alla luce uno…

Immagine del sitoVulnerabilità
Così tante vulnerabilità in n8n tutti in questo momento. Cosa sta succedendo?
Agostino Pellegrino - 06/02/2026

Negli ultimi tempi, la piattaforma di automazione n8n sta affrontando una serie crescente di bug di sicurezza. n8n è una piattaforma di automazione che trasforma task complessi in operazioni semplici e veloci. Con pochi click…

Immagine del sitoInnovazione
L’IA va in orbita: Qwen 3, Starcloud e l’ascesa del calcolo spaziale
Sergio Corpettini - 06/02/2026

Articolo scritto con la collaborazione di Giovanni Pollola. Per anni, “IA a bordo dei satelliti” serviva soprattutto a “ripulire” i dati: meno rumore nelle immagini e nei dati acquisiti attraverso i vari payload multisensoriali, meno…

Immagine del sitoCyber Italia
Truffe WhatsApp: “Prestami dei soldi”. Il messaggio che può svuotarti il conto
Silvia Felici - 06/02/2026

Negli ultimi giorni è stato segnalato un preoccupante aumento di truffe diffuse tramite WhatsApp dal CERT-AGID. I messaggi arrivano apparentemente da contatti conosciuti e richiedono urgentemente denaro, spesso per emergenze come spese mediche improvvise. La…