Red Hot Cyber
La cybersecurity è condivisione. Riconosci il rischio, combattilo, condividi le tue esperienze ed incentiva gli altri a fare meglio di te.
Cerca
Red Hot Cyber Academy

Il Qubit (lezione 2)

Roberto Campagnola : 30 Ottobre 2021 17:24

Autore: Roberto Campagnola
Data Pubblicazione: 30/10/2021

Nel primo articolo abbiamo illustrato i concetti di base e il quadro storico che ha posto le basi per la creazione dell’informatica classica. In questo articolo entriamo nel mondo quantistico, illustrando cosa sono i qubit, la componente fondamentale del processo computazionale che trasmette e contiene l’informazione in un computer quantistico (QC).


Scarica Gratuitamente Byte The Silence, il fumetto sul Cyberbullismo di Red Hot Cyber

«Il cyberbullismo è una delle minacce più insidiose e silenziose che colpiscono i nostri ragazzi. Non si tratta di semplici "bravate online", ma di veri e propri atti di violenza digitale, capaci di lasciare ferite profonde e spesso irreversibili nell’animo delle vittime. Non possiamo più permetterci di chiudere gli occhi». Così si apre la prefazione del fumetto di Massimiliano Brolli, fondatore di Red Hot Cyber, un’opera che affronta con sensibilità e realismo uno dei temi più urgenti della nostra epoca. Distribuito gratuitamente, questo fumetto nasce con l'obiettivo di sensibilizzare e informare. È uno strumento pensato per scuole, insegnanti, genitori e vittime, ma anche per chi, per qualsiasi ragione, si è ritrovato nel ruolo del bullo, affinché possa comprendere, riflettere e cambiare. Con la speranza che venga letto, condiviso e discusso, Red Hot Cyber è orgogliosa di offrire un contributo concreto per costruire una cultura digitale più consapevole, empatica e sicura.

Contattaci tramite WhatsApp al numero 375 593 1011 per richiedere ulteriori informazioni oppure alla casella di posta [email protected]


Supporta RHC attraverso:
  • L'acquisto del fumetto sul Cybersecurity Awareness
  • Ascoltando i nostri Podcast
  • Seguendo RHC su WhatsApp
  • Seguendo RHC su Telegram
  • Scarica gratuitamente "Dark Mirror", il report sul ransomware di Dark Lab


  • Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.


    Come i calcolatori classici usano i bit come unità fondamentale dell’informazione, e tali bit si “materializzano” nel passaggio di una corrente in un circuito integrato, così nella computazione quantistica si usano i qubit (Quantum bit).

    I metodi sperimentali per costruire i qubit sono molteplici, e più avanti daremo riferimento delle principali architetture di processori per computer quantistici e realizzazioni dei qubit, anche se per semplicità non si può prescindere da una trattazione puramente matematica e più astratta.

    Prima di iniziare, dobbiamo però illustrare alcuni concetti fondamentali della meccanica quantistica e della notazione matematiche che si adopera.

    Vettori di stato e sovrapposizione

    Un qualsiasi sistema quantistico può essere descritto da grandezza, chiamato vettore di stato in uno spazio matematico chiamato Spazio di Hilbert, uno spazio vettoriale complesso.

    Per descrivere uno stato quantistico si usa la notazione di Dirac, indicando i vettori come



    chiamato vettore ket; si postula che tale vettore contenga tutte le informazioni sullo stato fisico del sistema quantistico che stiamo studiando. Associati ai vettori ket, esistono i vettori bra indicati come:



    e indicano i vettori a cui è stata applicata l’operazione matematica di coniugazione complessa.

    Associata ai vettori di stato, si studia la funzione d’onda, una funzione complessa delle variabili spaziotemporali, tale che il suo modulo elevato al quadrato rappresenta la densità di probabilità di trovare il sistema fisico in un punto dello spazio ad un dato istante.

    Tra i postulati fondamentali della meccanica quantistica, ha per noi molto interesse il Principio di sovrapposizione secondo cui due stati quantistici possono essere “sovrapposti”, dando origine ad un ulteriore stato quantisticamente valido.

    Date, per esempio due funzioni d’onda:



    allora anche la funzione d’onda con:

    e



    numeri complessi, rappresenta uno stato fisico valido. Vediamo cosa comporta il principio di sovrapposizione nella costruzione dei qubit.

    Così come i bit classici possono assumere i valori 0 o 1, anche i qubit possono essere definiti da vettori che li definiscono negli stati:



    Tra gli stati ammessi possiamo trovare anche una combinazione lineare dei due stati, una sovrapposizione appunto, definita come:



    Il qubit descritto da questo stato è simultaneamente, fino al momento della misura o della interazione con l’esterno (possiamo dire finché non è stato svolto il compito per il quale il QC è stato programmato) nello stato 0 e nello stato 1.

    I coefficienti che vediamo nella formula. i coefficienti:



    non appartengono al campo dei numeri reali, ma sono coefficienti complessi, e il loro quadrato:



    rappresenta la probabilità di ottenere lo stato 0 o lo stato 1, con la condizione che:

     

    Dai bit ai qubit


    Valori dei bit (sx), e sovrapposizione per i qubit (dx)

    E’ questa la differenza rivoluzionaria rispetto ai bit classici, e ciò che rappresenta il punto cardine e la potenza futura dei computer quantistici. I bit classici posso essere o 0 o 1, quindi un registro di n bit può essere in una delle 2^n configurazioni possibili mentre eseguo una serie di calcoli che genereranno un output, anch’esso ben definito tra le 2^n configurazioni possibili.

    In in QC invece il mio insieme di qubit, opportunamente impostato, dopo ogni operazione, può essere contemporaneamente al massimo in tutte le 2^n configurazioni, ognuna secondo opportuni pesi. In realtà non sempre è possibile avere i nostri qubit tutti sovrapposti nelle 2^n configurazioni possibili: questo perché alcuni qubit mi potranno servire come qubit di controllo, avendo sempre uno stato definito 0 oppure 1, andando a far diminuire le configurazioni possibili.

    Un altro fenomeno che riduce le combinazioni possibili dei qubit è il fenomeno dell’entanglement, di cui parleremo nel prossimo numero della rubrica.

    Un modo per rappresentare graficamente il concetto di sovrapposizione di stati per un singolo qubit fa uso della sfera di Bloch, una sfera di raggio unitario i cui punti sulla superficie sono in corrispondenza biunivoca con gli stati del qubit: il “polo nord” rappresenta lo stato



    il “polo sud” lo stato



    mentre gli altri punti mappano le sovrapposizioni di



    precisamente:



    con

     

    La Sfera di Bloch


    La Sfera di Bloch

    Si potrebbe pensare che in un singolo qubit sia contenuta una quantità infinita di informazioni, come potrebbero essere i punti di una sfera. Questa tuttavia è una maniera fuorviante e imprecisa di pensare ai qubit; sappiamo dai postulati della Meccanica Quantistica che nel momento in cui eseguo una misura su un qubit o interagisco con esso ottengo solo 0 oppure 1.

    La misura cambia lo stato di un qubit, facendo “collassare” lo stato dalla sovrapposizione di 0 e 1 ad uno stato specifico definito dalle condizioni della misura. Da una singola misura di un qubit ottengo solo un singolo bit di informazione, è fondamentale ricordarlo. Quindi potremmo essere in grado di calcolare i due coefficienti α e β in solo se avessimo infiniti qubit tutti preparati in modo identico.

    Questi fenomeni all’apparenza altamente contro intuitivi portano ad una incredibile accelerazione nella computazione di cui parleremo più in dettaglio nel prossimo numero dedicato agli algoritmi quantistici che possono essere utilizzati.

    Per una panoramica sulle tecniche per costruire i qubit e i processori dei principali computer quantistici vi rimandiamo a https://www.redhotcyber.com/post/il-processore-del-computer-quantistico.

    Reference:

    Quantum Computation and Quantum Information – Nielsen, Chuang

    Photo credit:
    https://en.wikipedia.org/wiki/Bloch_sphere
    https://itmanager.space/qubit/

    Roberto Campagnola
    Laureato in fisica delle particelle, attualmente assegnista di ricerca presso i Laboratori Nazionali di Frascati-INFN e il CERN, si occupa dell’upgrade dell’esperimento CMS – Compact Muon Solenoid per il Large Hadron Collider.

    Lista degli articoli

    Articoli in evidenza

    Hai la carta di credito in tasca? I Criminal hacker ringraziano!
    Di Redazione RHC - 16/08/2025

    Una nuova campagna malware per Android sta prendendo di mira i clienti bancari in Brasile, India e Sud-est asiatico, combinando frodi contactless NFC, intercettazione delle chiamate e sfruttamento del...

    Google Chrome a tutta Privacy! Un nuovo blocco per gli script in modalità incognito
    Di Redazione RHC - 16/08/2025

    Google sta testando una nuova funzionalità per migliorare la privacy nella modalità di navigazione in incognito di Chrome su Windows: il blocco degli script in incognito (PrivacySandboxFinge...

    Droni in missione potranno decidere in modo autonomo quali uomini uccidere?
    Di Redazione RHC - 15/08/2025

    Sembra che gli Stati Uniti abbiano già seriamente preso in considerazione il concetto di guerra autonoma. Il jet da combattimento autonomo della DARPA , risulta in grado di combattere senza pilot...

    CrowdStrike Global Threat Report 2025: l’anno dell’avversario intraprendente
    Di Redazione RHC - 15/08/2025

    CrowdStrike ha pubblicato il suo Global Threat Report 2025, che documenta un balzo in avanti nel comportamento dei criminali informatici e dei gruppi statali. Gli esperti definiscono il 2024 “l&...

    Dopo il bucato, Figure 02 ora piega il bucato. Ma per ora dovrai continuare a farlo da solo
    Di Redazione RHC - 15/08/2025

    Solamente due settimane fa, il robot umanoide prodotto da Figure ha destato in noi grande meraviglia, quando con destrezza ha preso degli indumenti da un paniere dei panni sporchi e li ha collocati al...