
Redazione RHC : 2 Dicembre 2023 22:22
In un nuovo studio, Redwood Research, un laboratorio di ricerca per l’allineamento dell’intelligenza artificiale, ha svelato che i modelli linguistici di grandi dimensioni (LLM) possono padroneggiare il “ragionamento codificato”, una forma di steganografia.
Questo fenomeno intrigante consente ai LLM di incorporare sottilmente passaggi di ragionamento intermedi all’interno del testo generato in un modo che risulta indecifrabile per i lettori umani.
I modelli linguistici di grandi dimensioni (LLM) spesso beneficiano di fasi intermedie di ragionamento per generare risposte a problemi complessi. Quando questi passaggi intermedi di ragionamento vengono utilizzati per monitorare l’attività del modello, è essenziale che questo ragionamento esplicito sia fedele, cioè che rifletta ciò su cui effettivamente ragiona il modello.
Christmas Sale -40% 𝗖𝗵𝗿𝗶𝘀𝘁𝗺𝗮𝘀 𝗦𝗮𝗹𝗲! Sconto del 𝟰𝟬% 𝘀𝘂𝗹 𝗽𝗿𝗲𝘇𝘇𝗼 𝗱𝗶 𝗰𝗼𝗽𝗲𝗿𝘁𝗶𝗻𝗮 del Corso "Dark Web & Cyber Threat Intelligence" in modalità E-Learning sulla nostra Academy!🚀
Fino al 𝟯𝟭 𝗱𝗶 𝗗𝗶𝗰𝗲𝗺𝗯𝗿𝗲, prezzi pazzi alla Red Hot Cyber Academy. 𝗧𝘂𝘁𝘁𝗶 𝗶 𝗰𝗼𝗿𝘀𝗶 𝘀𝗰𝗼𝗻𝘁𝗮𝘁𝗶 𝗱𝗲𝗹 𝟰𝟬% 𝘀𝘂𝗹 𝗽𝗿𝗲𝘇𝘇𝗼 𝗱𝗶 𝗰𝗼𝗽𝗲𝗿𝘁𝗶𝗻𝗮.
Per beneficiare della promo sconto Christmas Sale, scrivici ad [email protected] o contattaci su Whatsapp al numero di telefono: 379 163 8765.
Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì. |
I risultati dello studio indicano che gli LLM possono essere addestrati a sfruttare questo ragionamento codificato per ottenere prestazioni superiori mantenendo l’utente ignaro degli intricati processi di ragionamento in gioco. Man mano che gli LLM continuano ad evolversi e diventano più potenti, è probabile che questo ragionamento codificato emerga in modo naturale, rendendolo ancora più difficile da rilevare.
Tuttavia, il ragionamento codificato potrebbe potenzialmente minare la trasparenza del processo di ragionamento del modello e rendere difficile il monitoraggio del comportamento dei sistemi di intelligenza artificiale.
Una tecnica ampiamente adottata per migliorare la precisione degli LLM è il ragionamento della catena di pensiero (CoT). Questo metodo istruisce il modello a rivelare la sua logica passo dopo passo, portando alla risposta finale. Gli studi dimostrano che in molte attività, il CoT migliora le prestazioni dei LLM e semplifica l’interpretazione dei risultati.
Il gruppo di ricerca sostiene che, man mano che i modelli linguistici si rafforzano, è più probabile che questo comportamento appaia in modo naturale. Infine, descrive una metodologia che consente la valutazione delle difese contro il ragionamento codificato mostrando che, nelle giuste condizioni, la parafrasi impedisce con successo anche ai migliori schemi di codifica.
Redazione
Il MITRE ha reso pubblica la classifica delle 25 più pericolose debolezze software previste per il 2025, secondo i dati raccolti attraverso le vulnerabilità del national Vulnerability Database. Tali...

Un recente resoconto del gruppo Google Threat Intelligence (GTIG) illustra gli esiti disordinati della diffusione di informazioni, mettendo in luce come gli avversari più esperti abbiano già preso p...

All’interno del noto Dark Forum, l’utente identificato come “espansive” ha messo in vendita quello che descrive come l’accesso al pannello di amministrazione dell’Agenzia delle Entrate. Tu...

In seguito alla scoperta di due vulnerabilità zero-day estremamente critiche nel motore del browser WebKit, Apple ha pubblicato urgentemente degli aggiornamenti di sicurezza per gli utenti di iPhone ...

La recente edizione 2025.4 di Kali Linux è stata messa a disposizione del pubblico, introducendo significative migliorie per quanto riguarda gli ambienti desktop GNOME, KDE e Xfce. D’ora in poi, Wa...