Red Hot Cyber
La cybersecurity è condivisione. Riconosci il rischio, combattilo, condividi le tue esperienze ed incentiva gli altri a fare meglio di te.
Cerca
Red Hot Cyber Academy

Zero-Shot Classification: la Rivoluzione dell’Apprendimento Automatico

Simone Raponi : 17 Agosto 2023 10:31

L’innovazione tecnologica è un viaggio affascinante, e al suo interno, l’Intelligenza Artificiale (IA) sta emergendo come una delle forze trainanti. Tra le molteplici tecniche di IA, una in particolare sta guadagnando crescente interesse: la Zero-Shot Classification. Ma che cosa significa e perché è così cruciale nel panorama dell’apprendimento automatico?

Introduzione: Cosa significa Zero-Shot?

Quando parliamo di apprendimento “Zero-Shot”, immaginiamo di voler insegnare a qualcuno un nuovo gioco fornendo solo una descrizione verbale senza mai mostrargli come si gioca effettivamente. Allo stesso modo, un modello “Zero-Shot” è in grado di effettuare una classificazione su oggetti o concetti che non ha mai visto durante la sua fase di addestramento.

Apprendimento Tradizionale vs Zero-Shot

Nell’apprendimento automatico classico, addestriamo i modelli fornendo loro numerosi esempi di un determinato concetto. Se volessimo che riconoscessero mele, ad esempio, gli forniremmo migliaia di immagini di mele. Tuttavia, se venisse introdotto un concetto completamente nuovo, come un’arancia, il modello potrebbe essere incapace di riconoscerlo.

Prompt Engineering & Sicurezza: diventa l’esperto che guida l’AI

Vuoi dominare l’AI generativa e usarla in modo sicuro e professionale? Con il Corso Prompt Engineering: dalle basi alla cybersecurity, guidato da Luca Vinciguerra, data scientist ed esperto di sicurezza informatica, impari a creare prompt efficaci, ottimizzare i modelli linguistici e difenderti dai rischi legati all’intelligenza artificiale. Un percorso pratico e subito spendibile per distinguerti nel mondo del lavoro.
Non restare indietro: investi oggi nelle tue competenze e porta il tuo profilo professionale a un nuovo livello.
Guarda subito l'anteprima gratuita del corso su academy.redhotcyber.com
Contattaci per ulteriori informazioni tramite WhatsApp al 375 593 1011 oppure scrivi a [email protected]



Supporta RHC attraverso:
 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.
 

Questo è dove la Zero-Shot Classification cambia le regole del gioco. Questa tecnica permette alla macchina di riconoscere e classificare oggetti o concetti mai visti prima, basandosi su descrizioni o relazioni semantiche anziché su esempi specifici.

Esempio di utilizzo di Zero-Shot Classification utilizzando una rete pre-addestrata

Il Cuore della Zero-Shot Classification

  • Rappresentazioni Semantiche: La Zero-Shot Classification utilizza rappresentazioni semantiche degli oggetti. Ad esempio, un “uccello” potrebbe essere descritto come “un animale che vola e ha piume”. Queste descrizioni aiutano il modello a costruire una sorta di “mappa mentale” dei concetti.
  • Embedding Spaziali: Queste sono trasformazioni matematiche che posizionano concetti in uno spazio in cui concetti simili sono vicini tra loro. Immagina una mappa dove tutti i frutti sono raggruppati insieme in un angolo, tutti gli animali in un altro angolo, e così via; questo è ciò che fa l’embedding spaziale.
  • Trasferimento di Conoscenza (Transfer Learning): La Zero-Shot Classification spesso utilizza ciò che ha imparato da un compito per migliorare le performance in un altro compito. Questa trasferibilità della conoscenza è fondamentale.

Implicazioni e Applicazioni nel Mondo Reale

La Zero-Shot Classification, grazie alla sua natura rivoluzionaria, ha una vasta gamma di applicazioni in diversi settori. Questo non solo potenzia le capacità esistenti, ma apre anche nuove frontiere nelle aree in cui il tradizionale apprendimento automatico potrebbe aver incontrato barriere.

Medicina

  • Diagnostica Precoce: In ambito medico, la capacità di identificare sintomi o condizioni rare da immagini diagnostiche, come le risonanze magnetiche o le radiografie, potrebbe rivoluzionare la diagnosi precoce. Anche se il modello non ha mai visto un certo tipo di tumore o malattia in fase di addestramento, potrebbe, attraverso la Zero-Shot Classification, riconoscere qualcosa di anormale e suggerire ulteriori indagini.
  • Ricerca Farmaceutica: Nello sviluppo di nuovi farmaci, potrebbe identificare potenziali candidati per nuove terapie basandosi su descrizioni molecolari o effetti desiderati senza necessariamente aver analizzato quella molecola in precedenza.

Biologia e Conservazione

  • Classificazione delle Specie: In regioni poco esplorate, i ricercatori potrebbero trovarsi di fronte a specie mai viste prima. Utilizzando modelli addestrati con la Zero-Shot Classification, potrebbero ottenere informazioni preliminari su questi nuovi organismi basandosi su descrizioni sommarie o immagini di bassa qualità.
  • Monitoraggio Ambientale: I sistemi basati su questa tecnica potrebbero monitorare cambiamenti ambientali o invasioni di specie estranee in un ecosistema, anche se non hanno mai “visto” tali eventi in precedenza.

Settore Retail e Commerciale

  • Gestione del Catalogo: I negozi online potrebbero utilizzare la Zero-Shot Classification per classificare nuovi prodotti in base a descrizioni testuali, facilitando la gestione del catalogo e migliorando l’esperienza dell’utente.
  • Rilevazione delle Tendenze: Identificando nuovi schemi o stili emergenti basandosi su descrizioni o feedback dei clienti, i rivenditori potrebbero anticipare le tendenze del mercato e agire di conseguenza.

Tecnologia e Sicurezza

  • Riconoscimento del Linguaggio Naturale: I chatbot o gli assistenti virtuali potrebbero rispondere a domande o comandi mai ricevuti prima grazie alla capacità di comprendere il contesto basato su descrizioni o sinonimi.
  • Sicurezza e Sorveglianza: La Zero-Shot potrebbe permettere ai sistemi di sicurezza di identificare comportamenti o oggetti sospetti in ambienti monitorati, anche se non sono stati specificamente addestrati per tali scenari.

Conclusioni

La Zero-Shot Classification rappresenta un salto evolutivo nell’ambito dell’intelligenza artificiale e dell’apprendimento automatico. Mentre le tecniche di apprendimento tradizionali hanno fornito fondamenta solide, basandosi sull’assimilazione e l’elaborazione di enormi quantità di dati, la Zero-Shot Classification ha introdotto una prospettiva più dinamica e adattiva. Questo nuovo approccio evoca un tipo di apprendimento più vicino a quello umano, dove non sempre è necessario avere esperienze dirette per comprendere e classificare nuovi concetti.

L’importanza di questa tecnica va ben oltre l’efficienza. Essa potrebbe essere la chiave per superare alcune delle più grandi sfide che l’apprendimento automatico sta attualmente affrontando, come la necessità di enormi set di dati di addestramento e la lentezza nell’adattarsi a nuovi scenari o informazioni. Le potenziali economie di risorse e tempo sono evidenti, ma c’è anche un aspetto più profondo: la capacità di acquisire conoscenze in modi precedentemente inimmaginabili.

Tuttavia, come con qualsiasi tecnologia emergente, è essenziale procedere con cautela. La fiducia nel modello, l’interpretazione dei risultati e la comprensione delle limitazioni sono elementi cruciali per una sua implementazione efficace. Ci sono, infatti, situazioni in cui la Zero-Shot Classification potrebbe non essere l’approccio ottimale e dove l’addestramento tradizionale potrebbe fornire risultati più accurati.

Il viaggio dell’innovazione è costellato di scoperte e sfide. La Zero-Shot Classification ci ha mostrato un orizzonte vasto e promettente, ma la strada per realizzare appieno il suo potenziale è ancora in corso. Quello che è certo è che questa tecnica ha arricchito il repertorio dell’IA, offrendo nuove opportunità e spunti per gli anni a venire.

Risorse e Approfondimenti

Per coloro che desiderano esplorare ulteriormente la Zero-Shot Classification e comprenderne meglio i dettagli e le applicazioni, ecco una lista di risorse vere e autorevoli:

Queste risorse rappresentano solo la punta dell’iceberg in un campo in rapida evoluzione. È sempre consigliabile tenersi aggiornati con le ultime ricerche e applicazioni per avere una visione completa e attuale della Zero-Shot Classification e delle sue potenzialità.

Simone Raponi
Esperto in machine learning e sicurezza informatica. Ha un dottorato in Computer Science and Engineering, durante il quale ha sviluppato modelli di intelligenza artificiale per rilevare pattern correlati alla cybersecurity. Durante la sua carriera accademica ha ricevuto diversi riconoscimenti ed ha pubblicato numerosi articoli scientifici divenuti popolari nell'ambito. Ex Machine Learning Scientist alla NATO, attualmente lavora come AI/ML Cybersecurity Engineer per una startup, dove impiega quotidianamente algoritmi di AI per affrontare e risolvere complesse sfide nel campo dell'automazione della sicurezza informatica.

Lista degli articoli

Articoli in evidenza

RHC intervista ShinyHunters: “I sistemi si riparano, le persone restano vulnerabili!”
Di RHC Dark Lab - 17/09/2025

ShinyHunters è un gruppo noto per il coinvolgimento in diversi attacchi informatici di alto profilo. Formatosi intorno al 2020, il gruppo ha guadagnato notorietà attraverso una serie di attacchi mir...

Chat Control: tra caccia ai canali illegali e freno a mano su libertà e privacy
Di Sandro Sana - 16/09/2025

La notizia è semplice, la tecnologia no. Chat Control (CSAR) nasce per scovare CSAM e dinamiche di grooming dentro le piattaforme di messaggistica. La versione “modernizzata” rinuncia alla backdo...

Great Firewall sotto i riflettori: il leak che svela l’industrializzazione della censura cinese
Di Redazione RHC - 16/09/2025

A cura di Luca Stivali e Olivia Terragni. L’11 settembre 2025 è esploso mediaticamente,  in modo massivo e massiccio,  quello che può essere definito il più grande leak mai subito dal Great Fir...

Violazione del Great Firewall of China: 500 GB di dati sensibili esfiltrati
Di Redazione RHC - 15/09/2025

Una violazione di dati senza precedenti ha colpito il Great Firewall of China (GFW), con oltre 500 GB di materiale riservato che è stato sottratto e reso pubblico in rete. Tra le informazioni comprom...

Dal Vaticano a Facebook con furore! Il miracolo di uno Scam divino!
Di Redazione RHC - 15/09/2025

Negli ultimi anni le truffe online hanno assunto forme sempre più sofisticate, sfruttando non solo tecniche di ingegneria sociale, ma anche la fiducia che milioni di persone ripongono in figure relig...