
Hai mai pensato a quanto sarebbe bello restaurare una immagine vecchia in bianco e nero, di bassa qualità, rendendola nitida e colorata come fosse una immagine dei giorni d’oggi?
Oggi è possibile grazie agli algoritmi di Intelligenza Artificiale e più specificatamente attraverso una GFP-GAN che andremo ad analizzare in questo articolo, oltre che utilizzare il software messo a disposizione dai ricercatori che la hanno creata.
Il restauro del volto di solito si basa su precedenti immagini, per poter definire la geometria facciale di riferimento, per poi ripristinare i dettagli fisici in maniera realistica e fedele.
Tuttavia, gli input di qualità molto bassa non possono offrire una priorità geometrica accurata mentre i riferimenti di alta qualità sono inaccessibili, limitando quindi l’applicabilità in scenari reali.
In questo articolo parleremo della GFP-GAN che sfrutta a “priori” i ricchi e diversificati input in una generative adversarial network (GAN) per poter restaurare una immagine datata .
Questo Generative Facial Prior (GFP) è incorporato nel processo di ripristino del viso tramite nuovi strati di trasformazione delle caratteristiche spaziali suddivisi in particolari canali, che consentono al nostro metodo di raggiungere un buon equilibrio tra realtà e fedeltà.
Grazie al potente design generativo facciale, il nostro GFP-GAN potrebbe ripristinare congiuntamente i dettagli del viso e migliorare i colori con un solo passaggio, mentre i metodi di inversione GAN richiedono una costosa ottimizzazione specifica dell’immagine all’inferenza.
Esperimenti approfonditi mostrano che il metodo raggiunge prestazioni superiori rispetto all’arte precedente su set di dati sia sintetici che reali.
GFPGAN mira a sviluppare un algoritmo pratico per il ripristino del viso.
Sfrutta precedenti ricchi e diversificati incapsulati in un GAN facciale pre-addestrata (ad es . StyleGAN2) ed è rilasciato sotto licenza Apache versione 2.0.
Per poter installare il software che consenta di svolgere l’algoritmo di GFP-GAN, disponibile su GitHub, occorre disporre all’interno del proprio computer dei seguenti prerequisiti:
A questo punto si inizia con l’installazione
git clone https://github.com/TencentARC/GFPGAN.gitcd GFPGAN
Installiamo le dipendenze
# Install basicsr – https://github.com/xinntao/BasicSR# We use BasicSR for both training and inferencepip install basicsr# Install facexlib – https://github.com/xinntao/facexlib# We use face detection and face restoration helper in the facexlib packagepip install facexlibpip install -r requirements.txtpython setup.py develop# If you want to enhance the background (non-face) regions with Real-ESRGAN,# you also need to install the realesrgan packagepip install realesrgan
Scarichiamo i modelli pre-addestrati a questo indirizzo:
wget https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth -P experiments/pretrained_models
Per utilizzare il sistema occorre inserire la seguente riga di comando:
python inference_gfpgan.py –upscale 2 –test_path inputs/whole_imgs –save_root results
A questo punto è possibile utilizzare il software oltre che analizzarlo in quanto il codice risulta essere disponibile e magari migliorarlo per le proprie esigenze.
Fonte
https://www.redhotcyber.com/wp-content/uploads/attachments/2101.04061.pdf
https://github.com/TencentARC/GFPGAN
https://huggingface.co/spaces/akhaliq/GFPGAN
Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

VulnerabilitàNel mondo della sicurezza circola da anni una convinzione tanto diffusa quanto pericolosa: “se è patchato, è sicuro”. Il caso dell’accesso amministrativo tramite FortiCloud SSO ai dispositivi FortiGate dimostra, ancora una volta, quanto questa affermazione sia non solo incompleta, ma…
CybercrimeLa quantità di kit PhaaS è raddoppiata rispetto allo scorso anno, riporta una analisi di Barracuda Networks, con la conseguenza di un aumento della tensione per i team addetti alla sicurezza”. Gli aggressivi nuovi arrivati…
CybercrimeUno studio su 100 app di incontri, ha rivelato un quadro inquietante: sono state rilevate quasi 2.000 vulnerabilità, il 17% delle quali è stato classificato come critico. L’analisi è stata condotta da AppSec Solutions. I…
InnovazioneCome tre insider con solo 200 dollari in tasca hanno raggiunto una capitalizzazione di 5000 miliardi e creato l’azienda che alimenta oltre il 90% dell’intelligenza artificiale. Kentucky, 1972. Un bambino taiwanese di nove anni che…
CybercrimeDa oltre un anno, il gruppo nordcoreano PurpleBravo conduce una campagna malware mirata denominata “Contagious Interview “, utilizzando falsi colloqui di lavoro per attaccare aziende in Europa, Asia, Medio Oriente e America Centrale. I ricercatori…