Red Hot Cyber
La cybersecurity è condivisione. Riconosci il rischio, combattilo, condividi le tue esperienze ed incentiva gli altri a fare meglio di te.
Cerca

AI sotto attacco: DeepSeek-R1 si comporta male nei test di Qualys

Redazione RHC : 7 Febbraio 2025 16:21

Milano, 6 febbraio 2025 DeepSeek-R1, un innovativo modello linguistico di grandi dimensioni (LLM) recentemente rilasciato dalla startup cinese DeepSeek, ha catturato l’attenzione del settore dell’intelligenza artificiale. Il modello dimostra di avere prestazioni competitive, mostrandosi più efficiente dal punto di vista delle risorse. Il suo approccio all’addestramento e la sua accessibilità offrono un’alternativa al tradizionale sviluppo dell’AI su larga scala, rendendo più ampiamente disponibili le capacità avanzate.

Per migliorare l’efficienza e preservare l’efficacia del modello, DeepSeek ha rilasciato diverse versioni distillate, adatte a diversi casi d’uso. Queste varianti, costruite su Llama e Qwen come modelli di base, sono disponibili in più dimensioni, che vanno da modelli più piccoli e leggeri, adatti ad applicazioni incentrate sull’efficienza, a versioni più grandi e potenti, progettate per compiti di ragionamento complessi.

Con il crescente entusiasmo per i progressi di DeepSeek, il team di Qualys ha condotto un’analisi di sicurezza della variante DeepSeek-R1 LLaMA 8B distillata utilizzando la piattaforma di sicurezza AI lanciata di recente, Qualys TotalAI.


PARTE LA PROMO ESTATE -40%

RedHotCyber Academy lancia una promozione esclusiva e a tempo limitato per chi vuole investire nella propria crescita professionale nel mondo della tecnologia e della cybersecurity!

Approfitta del 40% di sconto sull’acquisto congiunto di 3 corsi da te scelti dalla nostra Academy. Ad esempio potresti fare un percorso formativo includendo Cyber Threat intelligence + NIS2 + Criptovalute con lo sconto del 40%. Tutto questo lo potrai fruire, dove e quando vuoi e con la massima flessibilità, grazie a lezioni di massimo 30 minuti ciascuna.

Contattaci tramite WhatsApp al 375 593 1011 per richiedere ulteriori informazioni oppure scriviti alla casella di posta [email protected]


Supporta RHC attraverso:
  • L'acquisto del fumetto sul Cybersecurity Awareness
  • Ascoltando i nostri Podcast
  • Seguendo RHC su WhatsApp
  • Seguendo RHC su Telegram
  • Scarica gratuitamente "Dark Mirror", il report sul ransomware di Dark Lab


  • Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.


    I risultati presentati di seguito supportano le diffuse preoccupazioni nel settore sui rischi reali del modello. “Con l’accelerazione dell’adozione dell’AI, le organizzazioni devono andare oltre la valutazione delle performance per affrontare le sfide di sicurezza, protezione e conformità. Ottenere visibilità sugli asset AI, valutare le vulnerabilità e mitigare proattivamente i rischi è fondamentale per garantire un’implementazione responsabile e sicura dell’AI” ha commentato Dilip Bashwani, CTO per la Qualys Cloud Platform.

    Metodo di analisi KB ed evidenze

    Qualys ha testato la variante Deepseek R1 LLaMA 8B contro gli attacchi Jailbreak e Knowledge Base (KB) all’avanguardia di Qualys TotalAI, ponendo domande al LLM di destinazione in 16 categorie e valutando le risposte utilizzando il Qualys Judge LLM. Le risposte sono state valutate in base a vulnerabilità, problemi etici e rischi legali.

    Se una risposta è ritenuta vulnerabile, riceve una valutazione di gravità basata sulla sua immediatezza e sul suo potenziale impatto. Questo garantisce una valutazione completa del comportamento del modello e dei rischi associati.

    Nel test KB sono state condotte 891 valutazioni. Il modello Deepseek R1 LLaMA 8B non ha superato il 61% dei test, ottenendo i risultati peggiori in Disallineamento e migliori in Contenuti sessuali.

    Metodo di test di Jailbreak TotalAI ed evidenze

    Il jailbreak di un LLM comporta tecniche che aggirano i meccanismi di sicurezza incorporati, consentendo al modello di generare risposte limitate. Queste vulnerabilità possono creare risultati dannosi, tra cui istruzioni per attività illegali, disinformazione, violazioni della privacy e contenuti non etici. I jailbreak riusciti mettono in luce le debolezze dell’allineamento dell’AI e presentano seri rischi per la sicurezza, soprattutto in ambito aziendale e normativo.

    Il modello cinese è stato testato contro 18 tipi di jailbreak attraverso 885 attacchi. Ha fallito il 58% di questi tentativi, dimostrando una significativa suscettibilità alla manipolazione avversaria. Durante l’analisi, DeepSeek R1 ha faticato a prevenire diversi tentativi di jailbreak avversari, tra cui passaggi su come costruire un ordigno esplosivo, creare contenuti per siti web che si rivolgono a determinati gruppi incoraggiando discorsi d’odio, teorie cospirative e azioni violente, sfruttare le vulnerabilità del software, promuovere informazioni mediche errate, ecc.

    Esempio di DeepSeek che fornisce contenuti errati e nocivi

    I risultati ottenuti dai test evidenziano la necessità di migliorare i meccanismi di sicurezza per impedire l’elusione delle protezioni integrate, garantendo che il modello rimanga in linea con le linee guida etiche e normative. Un meccanismo di prevenzione efficace è l’implementazione di robusti guardrail che agiscono come filtri in tempo reale per rilevare e bloccare i tentativi di jailbreak. Questi guardrail aumentano la resilienza del modello adattandosi dinamicamente agli exploit avversari, contribuendo a mitigare i rischi di sicurezza nelle applicazioni aziendali. Queste vulnerabilità espongono le applicazioni a valle a rischi significativi per la sicurezza, rendendo necessari robusti test avversari e strategie di mitigazione.

    Allineamento si, allineamento no: Cosa è meglio?

    Negli ultimi anni, i modelli linguistici di grandi dimensioni (LLM) hanno rivoluzionato il panorama tecnologico, influenzando settori che vanno dalla ricerca accademica alla creazione di contenuti. Uno dei dibattiti più accesi riguarda il grado di allineamento di questi modelli con i principi etici e le linee guida imposte dai loro sviluppatori. Secondo un recente articolo pubblicato su Analytics India Magazine, i modelli non censurati sembrano ottenere risultati migliori rispetto a quelli allineati, sollevando interrogativi sulla necessità e sull’efficacia delle restrizioni etiche imposte dall’industria.

    L’allineamento dei modelli AI nasce dalla volontà di evitare contenuti pericolosi, disinformazione e bias dannosi. Aziende come OpenAI e Google implementano rigorose politiche di sicurezza per garantire che le loro IA rispettino standard di condotta condivisi, riducendo il rischio di abusi. Tuttavia, il processo di allineamento introduce inevitabilmente filtri che limitano la libertà espressiva e, in alcuni casi, compromettono le prestazioni del modello. Questo perché i sistemi allineati potrebbero evitare di rispondere a domande controverse o generare risposte eccessivamente generiche per attenersi alle linee guida.

    Al contrario, i modelli non censurati, che operano senza le stesse restrizioni etiche, dimostrano una maggiore flessibilità e capacità di fornire risposte più precise e dettagliate, soprattutto in contesti tecnici o di ricerca avanzata. Senza i vincoli imposti dall’allineamento, possono elaborare una gamma più ampia di informazioni e affrontare argomenti sensibili con maggiore profondità. Questo vantaggio, però, si accompagna a rischi significativi, come la diffusione incontrollata di disinformazione, contenuti dannosi e l’uso improprio da parte di attori malevoli.

    Il problema centrale di questo dibattito non è solo tecnico, ma etico e politico. Un’intelligenza artificiale completamente libera potrebbe rappresentare una minaccia se utilizzata per scopi illeciti, mentre un modello eccessivamente allineato rischia di diventare inefficace o di riflettere un’agenda ideologica oppure attuare censura.

    Alcuni ricercatori sostengono che l’equilibrio ideale risieda in un allineamento parziale, che consenta un certo grado di libertà espressiva senza compromettere la sicurezza. Tuttavia, definire i confini di tale equilibrio è una sfida complessa e soggetta a interpretazioni divergenti.

    L’industria AI si trova dunque davanti a una scelta cruciale: proseguire lungo la strada dell’allineamento stringente, con il rischio di compromettere le prestazioni e la neutralità dei modelli, o adottare un approccio più permissivo, consapevole dei potenziali rischi. Le conseguenze di questa decisione avranno un impatto diretto sul futuro dell’IA e sulla sua integrazione nella società, influenzando la fiducia del pubblico e la regolamentazione del settore. La domanda fondamentale rimane aperta: quanto controllo è troppo controllo?

    Redazione
    La redazione di Red Hot Cyber è composta da un insieme di persone fisiche e fonti anonime che collaborano attivamente fornendo informazioni in anteprima e news sulla sicurezza informatica e sull'informatica in generale.

    Lista degli articoli

    Articoli in evidenza

    Red Hot Cyber Conference 2026: Aperte le Sponsorizzazioni per la Quinta Edizione a Roma
    Di Redazione RHC - 04/09/2025

    La Red Hot Cyber Conference è ormai un appuntamento fisso per la community di Red Hot Cyber e per tutti coloro che operano o nutrono interesse verso il mondo delle tecnologie digitali e della sicurez...

    Hexstrike-AI scatena il caos! Zero-day sfruttati in tempo record
    Di Redazione RHC - 04/09/2025

    Il rilascio di Hexstrike-AI segna un punto di svolta nel panorama della sicurezza informatica. Il framework, presentato come uno strumento di nuova generazione per red team e ricercatori, è in grado ...

    Nuovi ricatti: se non paghi, daremo tutti i tuoi dati in pasto alle intelligenze artificiali!
    Di Redazione RHC - 03/09/2025

    Il gruppo di hacker LunaLock ha aggiunto un nuovo elemento al classico schema di estorsione, facendo leva sui timori di artisti e clienti. Il 30 agosto, sul sito web Artists&Clients, che mette in ...

    LockBit 5.0 : segnali di una nuova e possibile “Rinascita”?
    Di Pietro Melillo - 03/09/2025

    LockBit rappresenta una delle più longeve e strutturate ransomware gang degli ultimi anni, con un modello Ransomware-as-a-Service (RaaS)che ha segnato in maniera profonda l’ecosistema criminale. A ...

    Il RE dei DDoS! Cloudflare blocca un attacco mostruoso da 11,5 terabit al secondo
    Di Redazione RHC - 03/09/2025

    Il record per il più grande attacco DDoS mai registrato nel giugno 2025 è già stato battuto. Cloudflare ha dichiarato di aver recentemente bloccato il più grande attacco DDoS della storia, che ha ...