Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Cerca
2nd Edition GlitchZone RHC 970x120 2
UtiliaCS 320x100
Dreamer: da Berkeley l’algoritmo AI che fa camminare un cane robot dal nulla in un’ora

Dreamer: da Berkeley l’algoritmo AI che fa camminare un cane robot dal nulla in un’ora

Stefano Gazzella : 8 Settembre 2022 08:00

Hai mai visto una piccola gazzella imparare a camminare? Un cerbiatto con le gambe lunghe il quale si alza in piedi, cade, si alza e cade di nuovo. 

Alla fine, rimane abbastanza a lungo ad agitare le sue gambe simili a stuzzicadenti in una serie di cadute. Sorprendentemente, dopo pochi minuti il cerbiatto saltella come un vecchio professionista.

Bene, ora abbiamo una versione robotica di questa classica scena da “il re leone”.


Nuovo Fumetto Betti

CALL FOR SPONSOR - Sponsorizza la Graphic Novel Betti-RHC
Sei un'azienda innovativa, che crede nella diffusione di concetti attraverso metodi "non convenzionali"? 
Conosci il nostro corso sul cybersecurity awareness a fumetti? 
Red Hot Cyber sta ricercando un nuovo sponsor per una nuova puntata del fumetto Betti-RHC mentre il team è impegnato a realizzare 3 nuovi episodi che ci sono stati commissionati. 
Contattaci tramite WhatsApp al numero 375 593 1011 per richiedere ulteriori informazioni oppure alla casella di posta [email protected]


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

Il cerbiatto in questo caso è un cane robot dell’Università della California, a Berkeley. 

Ed è anche uno studente sorprendentemente veloce (rispetto al resto dei robot). Il robot è anche speciale perché, a differenza di altri robot più appariscenti che potresti aver visto online, usa l’intelligenza artificiale per imparare a camminare.

Comincia a muovere i suo primi passi utilizzando la schiena, le gambe che ondeggiano, il robot impara a capovolgersi, alzarsi e camminare in un’ora. 

Altri dieci minuti di molestie con un rotolo di cartone sono sufficienti per insegnargli come resistere e riprendersi dall’essere spinto dai suoi creatori.

Non è la prima volta che un robot usa l’intelligenza artificiale per imparare a camminare, sia chiaro. Ma mentre i robot precedenti hanno appreso l’abilità per tentativi ed errori su innumerevoli iterazioni, il robot di Berkeley ha imparato a camminare e interagire nel mondo reale in poco tempo.

In un articolo pubblicato recentemente, i ricercatori, Danijar Hafner, Alejandro Escontrela e Philipp Wu, affermano che trasferire gli algoritmi che hanno preparato per questa simulazione non è affatto semplice. Piccoli dettagli e differenze tra il mondo reale e la simulazione possono far inciampare robot alle prime armi. D’altra parte, l’addestramento degli algoritmi nel mondo reale non è pratico: ci vorrebbe troppo tempo e pazienza.

Quattro anni fa, ad esempio, OpenAI ha mostrato una mano robotica gestita da una intelligenza artificiale in grado di manipolare un cubo

L’algoritmo di controllo, Dactyl, necessita di circa 100 anni di esperienza in una simulazione basata su 6.144 CPU e 8 GPU Nvidia V100 per svolgere questo compito relativamente semplice. 

Da allora le cose sono progredite, ma il problema rimane lì in gran parte. Gli algoritmi di apprendimento di rinforzo puro richiedono troppi tentativi ed errori per apprendere le abilità per potersi allenare nel mondo reale. In poche parole, i tempi di computazione sono alti e il processo di apprendimento deluderebbe ricercatori e robot prima di compiere progressi significativi.

Il team di Berkeley ha deciso di risolvere questo problema con un algoritmo chiamato Dreamer. 

Costruendo quello che viene chiamato “world model”. 

Dreamer può quindi proiettare la probabilità che un’azione futura raggiunga il suo obiettivo. Con l’esperienza, l’accuratezza delle sue proiezioni migliora. Filtrando in anticipo le azioni meno riuscite, il modello consente al robot di capire in modo più efficiente cosa funziona e cosa no.

“L’apprendimento tramite world model consente di migliorare si dall’esperienza passata ma consente anche ai robot di immaginare i risultati futuri di potenziali azioni, riducendo la quantità di tentativi ed errori nell’ambiente reale necessari per apprendere comportamenti di successo”

scrivono i ricercatori. 

“Predicendo i risultati futuri, i world model consentono la pianificazione e l’apprendimento del comportamento con solo piccole quantità di interazione nel mondo reale”.

In altre parole, un world model può ridurre l’equivalente di anni di tempo di addestramento in una simulazione a non più di un’ora, come in questo caso. 

L’approccio potrebbe avere una rilevanza più ampia anche rispetto ai cani robot. 

Il team ha anche applicato Dreamer a un braccio robotico pick-and-place e a un robot con ruote. In entrambi i casi, hanno scoperto che Dreamer permetteva ai loro robot di apprendere in modo efficiente le abilità rilevanti, senza bisogno di tempo per la simulazione. 

Applicazioni future più ambiziose potrebbero includere le auto a guida autonoma e altri tipi di intelligenza artificiale.

Immagine del sitoStefano Gazzella
Privacy Officer e Data Protection Officer, è Of Counsel per Area Legale. Si occupa di protezione dei dati personali e, per la gestione della sicurezza delle informazioni nelle organizzazioni, pone attenzione alle tematiche relative all’ingegneria sociale. Responsabile del comitato scientifico di Assoinfluencer, coordina le attività di ricerca, pubblicazione e divulgazione. Giornalista pubblicista, scrive su temi collegati a diritti di quarta generazione, nuove tecnologie e sicurezza delle informazioni.

Lista degli articoli
Visita il sito web dell'autore

Articoli in evidenza

Immagine del sito
Inviare un’email a un destinatario sbagliato, è da considerarsi data breach?
Di Stefano Gazzella - 25/11/2025

Piaccia o meno, l’invio di un’email a un destinatario errato costituisce una violazione di dati personali secondo il GDPR. Ovviamente, questo vale se l’email contiene dati personali o se altrime...

Immagine del sito
5.000 utenti italiani “freschi” in vendita nelle underground. Scopriamo di cosa si tratta
Di Redazione RHC - 25/11/2025

Nel gergo dei forum underground e dei marketplace del cybercrime, il termine combo indica un insieme di credenziali rubate composto da coppie del tipo email:password. Non si tratta di semplici elenchi...

Immagine del sito
AGI: Storia dell’Intelligenza Artificiale Generale. Dalla nascita alla corsa agli armamenti
Di Redazione RHC - 25/11/2025

Sulla veranda di una vecchia baita in Colorado, Mark Gubrud, 67 anni, osserva distrattamente il crepuscolo in lontananza, con il telefono accanto a sé, lo schermo ancora acceso su un’app di notizie...

Immagine del sito
Anthropic lancia Claude Opus 4.5, il modello di intelligenza artificiale più avanzato
Di Redazione RHC - 24/11/2025

Anthropic ha rilasciato Claude Opus 4.5 , il suo nuovo modello di punta, che, secondo l’azienda, è la versione più potente finora rilasciata e si posiziona al vertice della categoria nella program...

Immagine del sito
La Sorveglianza Digitale sui Lavoratori sta Arrivando: Muovi il Mouse più Veloce!
Di Redazione RHC - 24/11/2025

Il lavoro da remoto, ha dato libertà ai dipendenti, ma con essa è arrivata anche la sorveglianza digitale. Ne abbiamo parlato qualche tempo fa in un articolo riportando che tali strumenti di monitor...