Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Condividi la tua difesa. Incoraggia l'eccellenza.
La vera forza della cybersecurity risiede
nell'effetto moltiplicatore della conoscenza.
Banner Ransomfeed 970x120 1
Redhotcyber Banner Sito 320x100px Uscita 101125
Machine Learning e sicurezza informatica: minaccia crescente.

Machine Learning e sicurezza informatica: minaccia crescente.

28 Aprile 2021 06:44

I sistemi di machine Learning (ML) sono un elemento fondamentale nella nostra vita quotidiana e le relative minacce di sicurezza si riverseranno in tutti i tipi di applicazioni che utilizziamo, secondo il nuovo rapporto “The Road to Secure and Trusted AI” dei ricercatori della start-up israeliana Adversa.

A differenza del software tradizionale (in cui i difetti di progettazione e di sviluppo del codice rappresentano la maggior parte dei problemi di sicurezza), nei sistemi di intelligenza artificiale, possono esistere vulnerabilità all’interno di immagini, file audio, testo e altri dati utilizzati dagli algoritmi come input, che vengono elaborati in modo errato ed inconsapevole dai modelli di apprendimento automatico.

Questo rende difficile filtrare, gestire e rilevare input potenzialmente dannosi”, avverte il report, aggiungendo che i criminali informatici finiranno per utilizzare l’IA per i loro scopi dannosi.

“Sfortunatamente, il settore dell’IA non ha ancora iniziato a risolvere queste sfide, mettendo a repentaglio la sicurezza dei sistemi di IA già implementati, oltre a quelli futuri”.

Esistono già delle ricerche che mostrano che molti sistemi di apprendimento automatico sono vulnerabili ad attacchi di “contraddittorio”. Si tratta di manipolazioni impercettibili dei dati di input che fanno sì che i modelli si comportino in modo irregolare.

Secondo i ricercatori di Adversa, i sistemi di apprendimento automatico che elaborano i dati visivi rappresentano la maggior parte del lavoro sugli attacchi avversari, seguiti da analisi, elaborazione del linguaggio e guida autonoma.

“Con la crescita dell’IA, gli attacchi informatici si concentreranno sull’ingannare nuove interfacce visive e conversazionali”, scrivono i ricercatori.

Inoltre, poiché i sistemi di intelligenza artificiale si basano sul proprio apprendimento e sul proprio processo decisionale, i criminali informatici sposteranno la loro attenzione dai flussi di lavoro software tradizionali agli algoritmi che alimentano le capacità analitiche e di autonomia dei sistemi di intelligenza artificiale”.

Gli sviluppatori web che stanno integrando modelli di machine learning nelle loro applicazioni dovrebbero prendere nota di questi problemi di sicurezza, afferma Alex Polyakov, co-fondatore e CEO di Adversa.

Polyakov ha anche avvertito delle vulnerabilità nei modelli di apprendimento automatico serviti sul Web attraverso servizi di API forniti da grandi aziende tecnologiche.

“La maggior parte dei modelli che abbiamo visto online sono vulnerabili ed è stato dimostrato da diversi rapporti di ricerca e dai nostri test interni”, ha detto Polyakov. “Con alcuni accorgimenti, è possibile addestrare un attacco su un modello e poi trasferirlo su un altro modello tramite CopyCat, che consente di rubare un modello, applicare l’attacco su di esso e quindi utilizzarlo per attaccare le API”.

La maggior parte degli algoritmi di apprendimento automatico richiede grandi set di dati processati ed etichettati per addestrare i modelli. In molti casi, invece di impegnarsi per creare i propri set di dati, gli sviluppatori di machine learning cercano e scaricano i set di dati pubblicati su GitHub, Kaggle o altre piattaforme web che consentono loro di velocizzare l’apprendimento degli algoritmi di ML.

Eugene Neelou, co-fondatore e CTO di Adversa, ha messo in guardia sulle potenziali vulnerabilità in questi set di dati che possono portare ad attacchi di avvelenamento.

L’avvelenamento è quella tecnica che consente di inserire all’interno dei dati dei campioni creati in modo dannoso. Questi dati possono far sì che i modelli di intelligenza artificiale apprendano informazioni errate durante l’addestramento, apprendendo”, ha detto Neelou a The Daily Swig . “Il modello si comporterà come previsto in condizioni normali, ma i malintenzionati potrebbero chiamare quei trigger nascosti durante gli attacchi”.

Neelou ha anche avvertito degli attacchi di trojan, in cui gli avversari distribuiscono modelli contaminati sulle piattaforme web.

Invece di avvelenare i dati, gli aggressori hanno il controllo sui parametri interni del modello AI”, ha detto Neelou. “Potrebbero addestrare, personalizzare e distribuire i loro modelli infetti tramite GitHub o altre piattaforme”.

Sfortunatamente, GitHub e altre piattaforme non dispongono ancora di alcuna protezione per rilevare e difendersi dagli schemi di avvelenamento dei dati.

Ciò rende molto facile per gli aggressori diffondere set di dati e modelli contaminati sul Web ed il rischio potrebbe essere molto alto.

Fonte

https://adversa.ai/report-secure-and-trusted-ai/

https://www.mdpi.com/1999-4893/10/2/59/htm

https://portswigger.net/daily-swig/amp/machine-learning-security-vulnerabilities-are-a-growing-threat-to-the-web-report-highlights

Seguici su Google News, LinkedIn, Facebook e Instagram per ricevere aggiornamenti quotidiani sulla sicurezza informatica. Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Immagine del sito
Redazione

La redazione di Red Hot Cyber è composta da un insieme di persone fisiche e fonti anonime che collaborano attivamente fornendo informazioni in anteprima e news sulla sicurezza informatica e sull'informatica in generale.

Lista degli articoli

Articoli in evidenza

Immagine del sito
Piergiorgio Perotto, L’inventore del P101, Spiega il Perché l’Italia è Destinata ad Essere Un Perenne Follower
Massimiliano Brolli - 24/12/2025

Pier Giorgio Perotto (per chi non conosce questo nome), è stato un pioniere italiano dell’elettronica, che negli anni 60 quando lavorava presso la Olivetti, guidò il team di progettazione che costruì il Programma 101 (o…

Immagine del sito
Una Backdoor nel codice NVIDIA. 3 bug da 9.8 affliggono i sistemi di sviluppo AI e robotica
Redazione RHC - 24/12/2025

Quando si parla di sicurezza informatica, non si può mai essere troppo prudenti. Inoltre quando si parla di backdoor (o di presunte tali), la domanda che segue è: chi l’ha inserita? Era per scopo di…

Immagine del sito
Attacco DDoS contro La Poste francese: NoName057(16) rivendica l’operazione
Redazione RHC - 23/12/2025

Secondo quanto appreso da fonti interne di RedHotCyber, l’offensiva digitale che sta creando problemi al Sistema Postale Nazionale in Francia è stata ufficialmente rivendicata dal collettivo hacker filo-russo NoName057(16). Gli analisti confermano che l’azione rientra…

Immagine del sito
HackerHood di RHC scopre una privilege escalation in FortiClient VPN
Manuel Roccon - 23/12/2025

L’analisi che segue esamina il vettore di attacco relativo alla CVE-2025-47761, una vulnerabilità individuata nel driver kernel Fortips_74.sys utilizzato da FortiClient VPN per Windows. Il cuore della problematica risiede in una IOCTL mal gestita che…

Immagine del sito
MongoDB colpito da una falla critica: dati esfiltrabili senza autenticazione
Redazione RHC - 23/12/2025

Una vulnerabilità critica è stata individuata in MongoDB, tra le piattaforme di database NoSQL più utilizzate a livello globale. Questa falla di sicurezza, monitorata con il codice CVE-2025-14847, permette agli aggressori di estrarre dati sensibili…