Red Hot Cyber
La cybersecurity è condivisione. Riconosci il rischio, combattilo, condividi le tue esperienze ed incentiva gli altri a fare meglio di te.
Cerca

Machine Learning e sicurezza informatica: minaccia crescente.

Redazione RHC : 28 Aprile 2021 06:44

I sistemi di machine Learning (ML) sono un elemento fondamentale nella nostra vita quotidiana e le relative minacce di sicurezza si riverseranno in tutti i tipi di applicazioni che utilizziamo, secondo il nuovo rapporto “The Road to Secure and Trusted AI” dei ricercatori della start-up israeliana Adversa.

A differenza del software tradizionale (in cui i difetti di progettazione e di sviluppo del codice rappresentano la maggior parte dei problemi di sicurezza), nei sistemi di intelligenza artificiale, possono esistere vulnerabilità all’interno di immagini, file audio, testo e altri dati utilizzati dagli algoritmi come input, che vengono elaborati in modo errato ed inconsapevole dai modelli di apprendimento automatico.

Prompt Engineering & Sicurezza: diventa l’esperto che guida l’AI

Vuoi dominare l’AI generativa e usarla in modo sicuro e professionale? Con il Corso Prompt Engineering: dalle basi alla cybersecurity, guidato da Luca Vinciguerra, data scientist ed esperto di sicurezza informatica, impari a creare prompt efficaci, ottimizzare i modelli linguistici e difenderti dai rischi legati all’intelligenza artificiale. Un percorso pratico e subito spendibile per distinguerti nel mondo del lavoro.
Non restare indietro: investi oggi nelle tue competenze e porta il tuo profilo professionale a un nuovo livello.
Guarda subito l'anteprima gratuita del corso su academy.redhotcyber.com
Contattaci per ulteriori informazioni tramite WhatsApp al 375 593 1011 oppure scrivi a [email protected]



Supporta RHC attraverso:
 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.
 

Questo rende difficile filtrare, gestire e rilevare input potenzialmente dannosi”, avverte il report, aggiungendo che i criminali informatici finiranno per utilizzare l’IA per i loro scopi dannosi.

“Sfortunatamente, il settore dell’IA non ha ancora iniziato a risolvere queste sfide, mettendo a repentaglio la sicurezza dei sistemi di IA già implementati, oltre a quelli futuri”.

Esistono già delle ricerche che mostrano che molti sistemi di apprendimento automatico sono vulnerabili ad attacchi di “contraddittorio”. Si tratta di manipolazioni impercettibili dei dati di input che fanno sì che i modelli si comportino in modo irregolare.

Secondo i ricercatori di Adversa, i sistemi di apprendimento automatico che elaborano i dati visivi rappresentano la maggior parte del lavoro sugli attacchi avversari, seguiti da analisi, elaborazione del linguaggio e guida autonoma.

“Con la crescita dell’IA, gli attacchi informatici si concentreranno sull’ingannare nuove interfacce visive e conversazionali”, scrivono i ricercatori.

Inoltre, poiché i sistemi di intelligenza artificiale si basano sul proprio apprendimento e sul proprio processo decisionale, i criminali informatici sposteranno la loro attenzione dai flussi di lavoro software tradizionali agli algoritmi che alimentano le capacità analitiche e di autonomia dei sistemi di intelligenza artificiale”.

Gli sviluppatori web che stanno integrando modelli di machine learning nelle loro applicazioni dovrebbero prendere nota di questi problemi di sicurezza, afferma Alex Polyakov, co-fondatore e CEO di Adversa.

Polyakov ha anche avvertito delle vulnerabilità nei modelli di apprendimento automatico serviti sul Web attraverso servizi di API forniti da grandi aziende tecnologiche.

“La maggior parte dei modelli che abbiamo visto online sono vulnerabili ed è stato dimostrato da diversi rapporti di ricerca e dai nostri test interni”, ha detto Polyakov. “Con alcuni accorgimenti, è possibile addestrare un attacco su un modello e poi trasferirlo su un altro modello tramite CopyCat, che consente di rubare un modello, applicare l’attacco su di esso e quindi utilizzarlo per attaccare le API”.

La maggior parte degli algoritmi di apprendimento automatico richiede grandi set di dati processati ed etichettati per addestrare i modelli. In molti casi, invece di impegnarsi per creare i propri set di dati, gli sviluppatori di machine learning cercano e scaricano i set di dati pubblicati su GitHub, Kaggle o altre piattaforme web che consentono loro di velocizzare l’apprendimento degli algoritmi di ML.

Eugene Neelou, co-fondatore e CTO di Adversa, ha messo in guardia sulle potenziali vulnerabilità in questi set di dati che possono portare ad attacchi di avvelenamento.

L’avvelenamento è quella tecnica che consente di inserire all’interno dei dati dei campioni creati in modo dannoso. Questi dati possono far sì che i modelli di intelligenza artificiale apprendano informazioni errate durante l’addestramento, apprendendo”, ha detto Neelou a The Daily Swig . “Il modello si comporterà come previsto in condizioni normali, ma i malintenzionati potrebbero chiamare quei trigger nascosti durante gli attacchi”.

Neelou ha anche avvertito degli attacchi di trojan, in cui gli avversari distribuiscono modelli contaminati sulle piattaforme web.

Invece di avvelenare i dati, gli aggressori hanno il controllo sui parametri interni del modello AI”, ha detto Neelou. “Potrebbero addestrare, personalizzare e distribuire i loro modelli infetti tramite GitHub o altre piattaforme”.

Sfortunatamente, GitHub e altre piattaforme non dispongono ancora di alcuna protezione per rilevare e difendersi dagli schemi di avvelenamento dei dati.

Ciò rende molto facile per gli aggressori diffondere set di dati e modelli contaminati sul Web ed il rischio potrebbe essere molto alto.

Fonte

https://adversa.ai/report-secure-and-trusted-ai/

https://www.mdpi.com/1999-4893/10/2/59/htm

https://portswigger.net/daily-swig/amp/machine-learning-security-vulnerabilities-are-a-growing-threat-to-the-web-report-highlights

Redazione
La redazione di Red Hot Cyber è composta da un insieme di persone fisiche e fonti anonime che collaborano attivamente fornendo informazioni in anteprima e news sulla sicurezza informatica e sull'informatica in generale.

Lista degli articoli

Articoli in evidenza

RHC intervista ShinyHunters: “I sistemi si riparano, le persone restano vulnerabili!”
Di RHC Dark Lab - 17/09/2025

ShinyHunters è un gruppo noto per il coinvolgimento in diversi attacchi informatici di alto profilo. Formatosi intorno al 2020, il gruppo ha guadagnato notorietà attraverso una serie di attacchi mir...

Chat Control: tra caccia ai canali illegali e freno a mano su libertà e privacy
Di Sandro Sana - 16/09/2025

La notizia è semplice, la tecnologia no. Chat Control (CSAR) nasce per scovare CSAM e dinamiche di grooming dentro le piattaforme di messaggistica. La versione “modernizzata” rinuncia alla backdo...

Great Firewall sotto i riflettori: il leak che svela l’industrializzazione della censura cinese
Di Redazione RHC - 16/09/2025

A cura di Luca Stivali e Olivia Terragni. L’11 settembre 2025 è esploso mediaticamente,  in modo massivo e massiccio,  quello che può essere definito il più grande leak mai subito dal Great Fir...

Violazione del Great Firewall of China: 500 GB di dati sensibili esfiltrati
Di Redazione RHC - 15/09/2025

Una violazione di dati senza precedenti ha colpito il Great Firewall of China (GFW), con oltre 500 GB di materiale riservato che è stato sottratto e reso pubblico in rete. Tra le informazioni comprom...

Dal Vaticano a Facebook con furore! Il miracolo di uno Scam divino!
Di Redazione RHC - 15/09/2025

Negli ultimi anni le truffe online hanno assunto forme sempre più sofisticate, sfruttando non solo tecniche di ingegneria sociale, ma anche la fiducia che milioni di persone ripongono in figure relig...