Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Condividi la tua difesa. Incoraggia l'eccellenza.
La vera forza della cybersecurity risiede
nell'effetto moltiplicatore della conoscenza.
Banner Ransomfeed 970x120 1
Redhotcyber Banner Sito 320x100px Uscita 101125
Facciamo chiarezza sull’intelligenza artificiale, con una Intelligenza artificiale.

Facciamo chiarezza sull’intelligenza artificiale, con una Intelligenza artificiale.

13 Maggio 2021 07:43

Potrebbe essere un titolo poco chiaro, è vero.

Ma oggi ci racconterà cosa è una intelligenza Artificiale, l’intelligenza artificiale più evoluta del momento, ovvero la OpenAI GPT-3.

Tutto questo prima di iniziare a parlare di hacking delle AI con l’articolo Machine learning Hacking: Attacchi contraddittori e avvelenamento dei dati”, che pubblicheremo sabato prossimo.

Spesso i diversi concetti di data science, come il machine learning (ML) e deep learning (DL), vengono confusi.

Quindi è stato chiesto alla OpenAI GPT-3, di scrivere un post per fornire alcuni chiarimenti (in modo semplificato) sulle loro definizioni di intelligenza artificiale e su come sono correlate tra loro. Questo saggio molto impressionante (e solo leggermente modificato), è stato riproposto dal noto sito r-bloggher.

Buon divertimento!


Intelligenza artificiale

L’intelligenza artificiale è un concetto ampio e complesso che esiste da decenni.

L’intelligenza artificiale viene utilizzata per descrivere un concetto o un sistema che imita le funzioni cognitive del cervello umano. Può essere utilizzato per descrivere una situazione in cui le macchine possono agire o comportarsi in un modo che imita il comportamento umano. L’intelligenza artificiale è spesso usata per descrivere un sistema che può imparare dall’esperienza, può usare la conoscenza per svolgere compiti, ragionare e prendere decisioni.

Esistono molti tipi diversi di intelligenza artificiale. Ad esempio, ci sono sistemi esperti, reti neurali e logica fuzzy. Ora ci concentreremo sui diversi tipi di apprendimento automatico. Un modello di apprendimento automatico è un sistema di intelligenza artificiale che può apprendere da un data set e può fare previsioni o prendere decisioni basate sui dati (vedi anche Allora, cos’è veramente l’IA?).

Apprendimento automatico

L’apprendimento automatico è un sottoinsieme dell’intelligenza artificiale ed è un metodo con cui gli algoritmi apprendono dai dati. Può essere utilizzato per costruire modelli in grado di prevedere il comportamento futuro in base all’esperienza passata. L’apprendimento automatico viene utilizzato per analizzare set di dati di grandi dimensioni e per trovare modelli nei dati. Un esempio di un modello di apprendimento automatico è un filtro antispam che impara a distinguere tra messaggi spam e quelli normali. Esistono tre diversi tipi di machine learning. Ciascuno di essi viene utilizzato per un diverso tipo di problema.

Apprendimento supervisionato

L’apprendimento supervisionato è il tipo più comune di apprendimento automatico. Viene utilizzato per trovare modelli nei dati e viene utilizzato per prevedere il comportamento futuro in base all’esperienza passata. Nell’apprendimento supervisionato, i dati vengono suddivisi in due parti, note come set di addestramento e set di test. Il set di addestramento viene utilizzato per addestrare il modello e il set di test viene utilizzato per valutare l’accuratezza del modello.

L’obiettivo dell’apprendimento supervisionato è trovare una relazione tra variabili indipendenti e variabili dipendenti. Le variabili indipendenti sono le cose che sappiamo sui dati. Ad esempio, le variabili indipendenti sono le funzionalità utilizzate per descrivere un obbiettivo. Le variabili dipendenti sono le cose che vogliamo sapere sui dati. Ad esempio, la variabile dipendente è il profitto realizzato da un cliente specifico. La relazione tra le variabili indipendenti e le variabili dipendenti è nota come modello.

L’apprendimento supervisionato può essere utilizzato per prevedere il profitto di un cliente in base alle caratteristiche del cliente.

Apprendimento senza supervisione

L’apprendimento senza supervisione viene utilizzato per estrarre dai dati informazioni di aggregazione. Nell’apprendimento senza supervisione, non esiste un set di addestramento. Il modello viene appreso dal data set stesso in modo automatico. Può anche essere utilizzato per trovare gruppi o cluster nei dati o per identificare anomalie nei dati.

Insegnamento rafforzativo

L’apprendimento rafforzativo viene utilizzato per trovare un’azione o una decisione ottimale che massimizzerà una specifica ricompensa. Viene utilizzato per trovare una soluzione ottimale ad un problema. La soluzione ottimale dipende ovviamente dalla ricompensa.

L’apprendimento rafforzativo può essere utilizzato per ottimizzare diversi tipi di problemi. Ad esempio, può essere utilizzato per ottimizzare una funzione non lineare o per trovare il percorso più breve in una rete (vedere anche Reinforcement Learning: Life is a Maze ).

Deep learning

L’apprendimento profondo è un sottoinsieme dell’apprendimento automatico che utilizza reti neurali artificiali. Le reti neurali artificiali sono modelli computazionali che si ispirano all’architettura del cervello umano. Sono utilizzati per sviluppare algoritmi in grado di apprendere dai dati.

Il deep learning viene utilizzato per creare modelli in grado di classificare i dati o trovare modelli nei dati. L’apprendimento profondo viene utilizzato per eseguire attività complesse come il riconoscimento di oggetti, il riconoscimento vocale e la traduzione. Il deep learning è il tipo popolare di machine learning.


Abbiamo spiegato quindi, in modo semplice, la differenza tra intelligenza artificiale, machine learning e deep learning.

Abbiamo anche scoperto i tre diversi tipi di apprendimento automatico (apprendimento supervisionato, apprendimento non supervisionato e apprendimento per rinforzo) e spiegato come sono correlati.

Fonte

https://www.r-bloggers.com/2021/05/the-most-advanced-ai-in-the-world-explains-what-ai-machine-learning-and-deep-learning-are/amp/

Ti è piaciutno questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Cropped RHC 3d Transp2 1766828557 300x300
La redazione di Red Hot Cyber è composta da professionisti del settore IT e della sicurezza informatica, affiancati da una rete di fonti qualificate che operano anche in forma riservata. Il team lavora quotidianamente nell’analisi, verifica e pubblicazione di notizie, approfondimenti e segnalazioni su cybersecurity, tecnologia e minacce digitali, con particolare attenzione all’accuratezza delle informazioni e alla tutela delle fonti. Le informazioni pubblicate derivano da attività di ricerca diretta, esperienza sul campo e contributi provenienti da contesti operativi nazionali e internazionali.

Articoli in evidenza

Immagine del sitoHacking
Arriva Windows X-Lite! Il Windows 11 ottimizzato per PC che tutti aspettavano
Redazione RHC - 31/12/2025

Il 31 dicembre, per i giocatori e gli utenti di computer più vecchi che puntano alle massime prestazioni, la versione ufficiale di Windows 11 sembra essere spesso troppo pesante. Tuttavia, il celebre Windows X-Lite ha…

Immagine del sitoCyber Italia
Italia 2025: ransomware in crescita. Nel 2026 più notifiche, più casi
Sandro Sana - 31/12/2025

Nel 2025 il ransomware in Italia non ha “alzato la testa”. Ce l’aveva già alzata da anni. Noi, semmai, abbiamo continuato a far finta di niente. E i numeri – quelli che finiscono in vetrina,…

Immagine del sitoCyberpolitica
Telegram e abusi su minori: perché il calo dei ban nel 2025 non è una buona notizia
Simone D'Agostino - 31/12/2025

Ogni giorno Telegram pubblica, attraverso il canale ufficiale Stop Child Abuse, il numero di gruppi e canali rimossi perché riconducibili ad abusi su minori. Il confronto più significativo emerge osservando le sequenze di fine anno,…

Immagine del sitoCybercrime
Invece di salvare le aziende dal ransomware, le attaccavano. Due esperti affiliati di BlackCat
Redazione RHC - 31/12/2025

Nel panorama delle indagini sui crimini informatici, alcuni casi assumono un rilievo particolare non solo per l’entità dei danni economici, ma per il profilo delle persone coinvolte. Le inchieste sul ransomware, spesso associate a gruppi…

Immagine del sitoCybercrime
Cybercrime 2026: Quando gli attacchi informatici diventano violenza reale
Redazione RHC - 31/12/2025

Nel 2025, la criminalità informatica andrà sempre più oltre il “semplice denaro”: gli attacchi non riguardano solo fatture per tempi di inattività e pagamenti di riscatti, ma anche conseguenze umane reali, dalle interruzioni dell’assistenza sanitaria…