Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Condividi la tua difesa. Incoraggia l'eccellenza.
La vera forza della cybersecurity risiede
nell'effetto moltiplicatore della conoscenza.
Banner Desktop
320x100 Itcentric
Gli attacchi contraddittori alle AI, sono più pericolosi di quanto sembri.

Gli attacchi contraddittori alle AI, sono più pericolosi di quanto sembri.

6 Dicembre 2021 08:48

Negli ultimi cinque anni, gli attacchi ai sistemi di riconoscimento dei modelli con immagini contraddittorie accuratamente realizzate sono stati considerati una prova di concetto divertente ma banale.

Tuttavia, un team di scienziati dell’Università di Adelaide in Australia suggerisce che l’uso accidentale di set di dati di immagini molto popolari per progetti commerciali di intelligenza artificiale potrebbe creare una nuova minaccia alla sicurezza informatica.

In un esperimento, un sistema di riconoscimento facciale che sa chiaramente come riconoscere l’ex presidente degli Stati Uniti Barack Obama è stato fuorviato. Il sistema era certo all’80% che l’uomo che reggeva l’immagine stampata ed elaborata fosse Barack Obama. Al sistema non è interessato nemmeno che la “faccia finta” sia sul petto del modello e non sulle sue spalle.

La ricerca condotta dagli scienziati dimostra un difetto nell’intera architettura attuale per lo sviluppo dell’IA per il riconoscimento delle immagini. Questa vulnerabilità potrebbe esporre molti futuri sistemi di riconoscimento delle immagini a una facile manipolazione da parte di aggressori e scartare eventuali misure di sicurezza successive. Il potenziale per nuovi attacchi di immagini contraddittorie sarà inesauribile perché l’architettura fondamentale del sistema non prevede problemi futuri.

Le immagini contraddittorie vengono create accedendo a set di dati di immagini con modelli di computer addestrati. Un utente malintenzionato non ha bisogno di un accesso privilegiato ai dati di addestramento (o alle architetture del modello) poiché i set di dati più popolari sono ampiamente disponibili nella scena torrent costantemente aggiornata.

Secondo gli scienziati, la capacità di ingannare tali sistemi con immagini create è facilmente trasferibile a molte architetture.

“Gli attacchi di Universal NaTuralistic adversarial patch [TnTs] sono efficaci contro molti classificatori moderni, che vanno dalla rete neurale profonda ampiamente utilizzata WideResNet50 nel compito di riconoscimento visivo su larga scala del set di dati ImageNet, ai modelli facciali della rete neurale convoluzionale VGG nel compito di riconoscere i volti del set di dati PubFig sia negli attacchi mirati che in quelli non mirati”

hanno osservato gli scienziati.

Gli aggressori possono utilizzare correzioni di oggetti sottili e dall’aspetto naturale per fuorviare i sistemi di rete neurale senza manomettere il modello o rischiare il rilevamento.

Questo approccio è dovuto al fatto che i set di dati che si sono dimostrati efficaci, sono molto più economici da implementare rispetto a “iniziare da zero” e sono supportati e aggiornati da organizzazioni leader nel mondo accademico e industriale con ingenti finanziamenti.

I database ImageNet e PubFig sono progetti per la creazione e il mantenimento di un enorme database di immagini, destinato allo sviluppo e alla sperimentazione di metodi di riconoscimento delle immagini e visione artificiale.

Seguici su Google News, LinkedIn, Facebook e Instagram per ricevere aggiornamenti quotidiani sulla sicurezza informatica. Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Immagine del sito
Redazione

La redazione di Red Hot Cyber è composta da un insieme di persone fisiche e fonti anonime che collaborano attivamente fornendo informazioni in anteprima e news sulla sicurezza informatica e sull'informatica in generale.

Lista degli articoli

Articoli in evidenza

Immagine del sitoCyber Italia
26 milioni di nomi e numeri telefonici di italiani messi all’asta nel Dark Web
Redazione RHC - 24/12/2025

Mentre la consapevolezza sulla cybersicurezza cresce, il mercato nero dei dati personali non accenna a fermarsi. Un recente post apparso su un noto forum frequentato da criminali informatici in lingua russa, scoperto dai ricercatori di…

Immagine del sitoInnovazione
Le botnet robot stanno arrivando! Gli umanoidi propagano malware autonomo
Redazione RHC - 24/12/2025

prima di leggere questo articolo, vogliamo dire una cosa fondamentale: la robotica sta avanzando più velocemente degli approcci per proteggerla. Le macchine stanno diventando più intelligenti e accessibili, ma la sicurezza delle interfacce, dei protocolli…

Immagine del sitoCybercrime
Webrat: quando la voglia di imparare sicurezza informatica diventa un vettore d’attacco
Redazione RHC - 24/12/2025

C’è un momento preciso, quasi sempre notturno, in cui la curiosità supera la prudenza. Un repository appena aperto, poche stelle ma un exploit dal punteggio altissimo, il file README scritto bene quanto basta da sembrare…

Immagine del sitoCybercrime
Cloud sotto tiro: la campagna PCPcat compromette 59.128 server in 48 ore
Redazione RHC - 24/12/2025

Una campagna di cyberspionaggio su larga scala, caratterizzata da un elevato livello di automazione, sta colpendo in modo sistematico l’infrastruttura cloud che supporta numerose applicazioni web moderne. In meno di 48 ore, decine di migliaia…

Immagine del sitoInnovazione
Piergiorgio Perotto, L’inventore del P101, Spiega il Perché l’Italia è Destinata ad Essere Un Perenne Follower
Massimiliano Brolli - 24/12/2025

Pier Giorgio Perotto (per chi non conosce questo nome), è stato un pioniere italiano dell’elettronica, che negli anni 60 quando lavorava presso la Olivetti, guidò il team di progettazione che costruì il Programma 101 (o…