
Negli ultimi cinque anni, gli attacchi ai sistemi di riconoscimento dei modelli con immagini contraddittorie accuratamente realizzate sono stati considerati una prova di concetto divertente ma banale.
Tuttavia, un team di scienziati dell’Università di Adelaide in Australia suggerisce che l’uso accidentale di set di dati di immagini molto popolari per progetti commerciali di intelligenza artificiale potrebbe creare una nuova minaccia alla sicurezza informatica.
In un esperimento, un sistema di riconoscimento facciale che sa chiaramente come riconoscere l’ex presidente degli Stati Uniti Barack Obama è stato fuorviato. Il sistema era certo all’80% che l’uomo che reggeva l’immagine stampata ed elaborata fosse Barack Obama. Al sistema non è interessato nemmeno che la “faccia finta” sia sul petto del modello e non sulle sue spalle.
La ricerca condotta dagli scienziati dimostra un difetto nell’intera architettura attuale per lo sviluppo dell’IA per il riconoscimento delle immagini. Questa vulnerabilità potrebbe esporre molti futuri sistemi di riconoscimento delle immagini a una facile manipolazione da parte di aggressori e scartare eventuali misure di sicurezza successive. Il potenziale per nuovi attacchi di immagini contraddittorie sarà inesauribile perché l’architettura fondamentale del sistema non prevede problemi futuri.
Le immagini contraddittorie vengono create accedendo a set di dati di immagini con modelli di computer addestrati. Un utente malintenzionato non ha bisogno di un accesso privilegiato ai dati di addestramento (o alle architetture del modello) poiché i set di dati più popolari sono ampiamente disponibili nella scena torrent costantemente aggiornata.
Secondo gli scienziati, la capacità di ingannare tali sistemi con immagini create è facilmente trasferibile a molte architetture.
“Gli attacchi di Universal NaTuralistic adversarial patch [TnTs] sono efficaci contro molti classificatori moderni, che vanno dalla rete neurale profonda ampiamente utilizzata WideResNet50 nel compito di riconoscimento visivo su larga scala del set di dati ImageNet, ai modelli facciali della rete neurale convoluzionale VGG nel compito di riconoscere i volti del set di dati PubFig sia negli attacchi mirati che in quelli non mirati”
hanno osservato gli scienziati.
Gli aggressori possono utilizzare correzioni di oggetti sottili e dall’aspetto naturale per fuorviare i sistemi di rete neurale senza manomettere il modello o rischiare il rilevamento.
Questo approccio è dovuto al fatto che i set di dati che si sono dimostrati efficaci, sono molto più economici da implementare rispetto a “iniziare da zero” e sono supportati e aggiornati da organizzazioni leader nel mondo accademico e industriale con ingenti finanziamenti.
I database ImageNet e PubFig sono progetti per la creazione e il mantenimento di un enorme database di immagini, destinato allo sviluppo e alla sperimentazione di metodi di riconoscimento delle immagini e visione artificiale.
Seguici su Google News, LinkedIn, Facebook e Instagram per ricevere aggiornamenti quotidiani sulla sicurezza informatica. Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

CybercrimeLa comunità dei criminali informatici sta rapidamente aumentando il suo interesse nel reclutare personale all’interno delle aziende. Invece di sofisticati attacchi esterni, i criminali si affidano sempre più a fonti interne, ovvero persone disposte a…
CyberpoliticaNella Virginia settentrionale, lungo quello che viene ormai definito il “corridoio dei data center”, sorgono enormi strutture senza finestre che costituiscono l’ossatura fisica della corsa statunitense all’intelligenza artificiale. Questi edifici, grandi quanto hangar industriali, assorbono…
HackingIl team AI Research (STAR) di Straiker ha individuato Villager, un framework di penetration testing nativo basato sull’intelligenza artificiale, sviluppato dal gruppo cinese Cyberspike. Lo strumento, presentato come soluzione red team, è progettato per automatizzare…
InnovazioneIl confine tra Cina e Vietnam avrà presto nuovi “dipendenti” che non hanno bisogno di dormire, mangiare o fare turni. L’azienda cinese UBTech Robotics ha ricevuto un contratto da 264 milioni di yuan (circa 37…
CulturaLa cultura hacker è una materia affascinante. E’ una ricca miniera di stravaganti innovazioni, genialità ed intuito. Di personaggi bizzarri, di umorismo fatalista, di meme, ma soprattutto cultura, ingegneria e scienza. Ma mentre Linux ha…