Red Hot Cyber
Sicurezza Informatica, Notizie su Cybercrime e Analisi Vulnerabilità
Gli attacchi contraddittori alle AI, sono più pericolosi di quanto sembri.

Gli attacchi contraddittori alle AI, sono più pericolosi di quanto sembri.

6 Dicembre 2021 08:48

Negli ultimi cinque anni, gli attacchi ai sistemi di riconoscimento dei modelli con immagini contraddittorie accuratamente realizzate sono stati considerati una prova di concetto divertente ma banale.

Tuttavia, un team di scienziati dell’Università di Adelaide in Australia suggerisce che l’uso accidentale di set di dati di immagini molto popolari per progetti commerciali di intelligenza artificiale potrebbe creare una nuova minaccia alla sicurezza informatica.

In un esperimento, un sistema di riconoscimento facciale che sa chiaramente come riconoscere l’ex presidente degli Stati Uniti Barack Obama è stato fuorviato. Il sistema era certo all’80% che l’uomo che reggeva l’immagine stampata ed elaborata fosse Barack Obama. Al sistema non è interessato nemmeno che la “faccia finta” sia sul petto del modello e non sulle sue spalle.

La ricerca condotta dagli scienziati dimostra un difetto nell’intera architettura attuale per lo sviluppo dell’IA per il riconoscimento delle immagini. Questa vulnerabilità potrebbe esporre molti futuri sistemi di riconoscimento delle immagini a una facile manipolazione da parte di aggressori e scartare eventuali misure di sicurezza successive. Il potenziale per nuovi attacchi di immagini contraddittorie sarà inesauribile perché l’architettura fondamentale del sistema non prevede problemi futuri.

Le immagini contraddittorie vengono create accedendo a set di dati di immagini con modelli di computer addestrati. Un utente malintenzionato non ha bisogno di un accesso privilegiato ai dati di addestramento (o alle architetture del modello) poiché i set di dati più popolari sono ampiamente disponibili nella scena torrent costantemente aggiornata.

Secondo gli scienziati, la capacità di ingannare tali sistemi con immagini create è facilmente trasferibile a molte architetture.

“Gli attacchi di Universal NaTuralistic adversarial patch [TnTs] sono efficaci contro molti classificatori moderni, che vanno dalla rete neurale profonda ampiamente utilizzata WideResNet50 nel compito di riconoscimento visivo su larga scala del set di dati ImageNet, ai modelli facciali della rete neurale convoluzionale VGG nel compito di riconoscere i volti del set di dati PubFig sia negli attacchi mirati che in quelli non mirati”

hanno osservato gli scienziati.

Gli aggressori possono utilizzare correzioni di oggetti sottili e dall’aspetto naturale per fuorviare i sistemi di rete neurale senza manomettere il modello o rischiare il rilevamento.

Questo approccio è dovuto al fatto che i set di dati che si sono dimostrati efficaci, sono molto più economici da implementare rispetto a “iniziare da zero” e sono supportati e aggiornati da organizzazioni leader nel mondo accademico e industriale con ingenti finanziamenti.

I database ImageNet e PubFig sono progetti per la creazione e il mantenimento di un enorme database di immagini, destinato allo sviluppo e alla sperimentazione di metodi di riconoscimento delle immagini e visione artificiale.

Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Cropped RHC 3d Transp2 1766828557 300x300
La Redazione di Red Hot Cyber fornisce aggiornamenti quotidiani su bug, data breach e minacce globali. Ogni contenuto è validato dalla nostra community di esperti come Pietro Melillo, Massimiliano Brolli, Sandro Sana, Olivia Terragni e Stefano Gazzella. Grazie alla sinergia con i nostri Partner leader nel settore (tra cui Accenture, CrowdStrike, Trend Micro e Fortinet), trasformiamo la complessità tecnica in consapevolezza collettiva, garantendo un'informazione accurata basata sull'analisi di fonti primarie e su una rigorosa peer-review tecnica.

Articoli in evidenza

Immagine del sitoInnovazione
Robot in cerca di carne: Quando l’AI affitta periferiche. Il tuo corpo!
Silvia Felici - 06/02/2026

L’evoluzione dell’Intelligenza Artificiale ha superato una nuova, inquietante frontiera. Se fino a ieri parlavamo di algoritmi confinati dietro uno schermo, oggi ci troviamo di fronte al concetto di “Meatspace Layer”: un’infrastruttura dove le macchine non…

Immagine del sitoCybercrime
DKnife: il framework di spionaggio Cinese che manipola le reti
Pietro Melillo - 06/02/2026

Negli ultimi anni, la sicurezza delle reti ha affrontato minacce sempre più sofisticate, capaci di aggirare le difese tradizionali e di penetrare negli strati più profondi delle infrastrutture. Un’analisi recente ha portato alla luce uno…

Immagine del sitoVulnerabilità
Così tante vulnerabilità in n8n tutti in questo momento. Cosa sta succedendo?
Agostino Pellegrino - 06/02/2026

Negli ultimi tempi, la piattaforma di automazione n8n sta affrontando una serie crescente di bug di sicurezza. n8n è una piattaforma di automazione che trasforma task complessi in operazioni semplici e veloci. Con pochi click…

Immagine del sitoInnovazione
L’IA va in orbita: Qwen 3, Starcloud e l’ascesa del calcolo spaziale
Sergio Corpettini - 06/02/2026

Articolo scritto con la collaborazione di Giovanni Pollola. Per anni, “IA a bordo dei satelliti” serviva soprattutto a “ripulire” i dati: meno rumore nelle immagini e nei dati acquisiti attraverso i vari payload multisensoriali, meno…

Immagine del sitoCyber Italia
Truffe WhatsApp: “Prestami dei soldi”. Il messaggio che può svuotarti il conto
Silvia Felici - 06/02/2026

Negli ultimi giorni è stato segnalato un preoccupante aumento di truffe diffuse tramite WhatsApp dal CERT-AGID. I messaggi arrivano apparentemente da contatti conosciuti e richiedono urgentemente denaro, spesso per emergenze come spese mediche improvvise. La…