Marcello Politi : 23 Gennaio 2024 06:59
Nel sempre mutevole mondo del Machine Learning, selezionare il modello più efficace per un determinato compito è un impegno non banale, che può richiedere molto tempo. Tradizionalmente, i metodi di valutazione cosi detti offline, come lo split tra dati di training e test o la k-fold cross validation sono quelli più conosciuti e utilizzati dai data scientist. Tuttavia, possono risultare carenti nel considerare cambiameni della distribuzione che possono verificarsi in scenari reali. In poche parole il modello potrebbe essere stato trainato su dei dati che pero non sono simili a quelli reali che il modello deve gestire quando è in produzione. Entra in gioco la valutazione online, un metodo condotto dopo l’implementazione e il deploy, che offre preziosi dettagli sulle prestazioni del modello in un ambiente dinamico.
Il “deployment ombra” comporta il lancio simultaneo di entrambi i modelli, con tutte le richieste dirette a ciascun modello in parallelo. La successiva raccolta di dati consente un’analisi approfondita per identificare il modello che offre le prestazioni migliori. Tuttavia, è essenziale notare che questo approccio comporta uno svantaggio: il costo di inferenza è raddoppiato poiché entrambi i modelli sono interrogati per ciascuna richiesta.
Il test A/B, forse il metodo più comunemente utilizzato, comporta il deployment di entrambi i modelli e la suddivisione casuale del traffico tra di essi. La successiva valutazione viene condotta sui log, utilizzando test di ipotesi statistica per accertare se uno dei modelli supera significativamente l’altro. Questo metodo fornisce un robusto quadro statistico per prendere decisioni informate sulla selezione del modello.
![]() Sponsorizza la prossima Red Hot Cyber Conference!Il giorno Lunedì 18 maggio e martedì 19 maggio 2026 9 maggio 2026, presso il teatro Italia di Roma (a due passi dalla stazione termini e dalla metro B di Piazza Bologna), si terrà la V edizione della la RHC Conference. Si tratta dell’appuntamento annuale gratuito, creato dalla community di RHC, per far accrescere l’interesse verso le tecnologie digitali, l’innovazione digitale e la consapevolezza del rischio informatico. Se sei interessato a sponsorizzare l'evento e a rendere la tua azienda protagonista del più grande evento della Cybersecurity Italiana, non perdere questa opportunità. E ricorda che assieme alla sponsorizzazione della conferenza, incluso nel prezzo, avrai un pacchetto di Branding sul sito di Red Hot Cyber composto da Banner più un numero di articoli che saranno ospitati all'interno del nostro portale. Quindi cosa stai aspettando? Scrivici subito a [email protected] per maggiori informazioni e per accedere al programma sponsor e al media Kit di Red Hot Cyber.
Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì. |
In situazioni in cui il rilascio di una nuova versione di un modello comporta rischi potenziali, il metodo di rilascio canary offre un approccio graduale e controllato. Invece di reindirizzare casualmente il traffico con una suddivisione del 50% tra i modelli A e B, una piccola parte del traffico viene reindirizzata al nuovo modello (modello canary). Se il modello canary ha prestazioni positive, il reindirizzamento del traffico aumenta gradualmente fino a gestire il 100% del carico.
Per i sistemi in cui l’interazione dell’utente svolge un ruolo fondamentale, come nei sistemi di raccomandazione, gli esperimenti interattivi offrono una straordinaria via per la valutazione del modello. Utilizzando contemporaneamente entrambi i modelli, agli utenti viene chiesto di fornire feedback selezionando la loro preferenza. Questo approccio guidato dall’utente offre preziosi dettagli sulle preferenze degli utenti e sull’efficacia di ciascun modello.
Mentre il test A/B è spesso considerato un approccio senza stato, i meccanismi di tipo bandit introducono una dimensione con stato alla valutazione del modello. Utilizzando algoritmi complessi, questi meccanismi monitorano continuamente le prestazioni di ciascun modello in tempo quasi reale. Questa valutazione continua consente una redistribuzione dinamica del traffico, cercando un equilibrio tra la sperimentazione del nuovo modello e la minimizzazione dell’impatto complessivo sulle prestazioni del sistema.
Nel Machine Learning, la ricerca del modello ottimale coinvolge una serie di metodi di valutazione offline e online. Dallo shadow deployment ai test A/B, dai canary release agli esperimenti interattivi e ai meccanismi bandit, ciascun approccio offre una prospettiva unica. Mentre il panorama dell’apprendimento automatico continua a evolversi, una comprensione articolata di questi metodi di valutazione permette agli operatori del settore di prendere decisioni informate, assicurando il rilascio di modelli robusti che resistono alle sfide degli scenari reali.
Nella giornata di oggi, migliaia di utenti Fastweb in tutta Italia hanno segnalato problemi di connessione alla rete fissa, con interruzioni improvvise del servizio Internet e difficoltà a navigare o...
Mattinata difficile per i clienti Fastweb: dalle 9:30 circa, il numero di segnalazioni di malfunzionamento è schizzato alle stelle. Secondo i dati di Downdetector, le interruzioni hanno superato le 3...
Dopo il successo dello scorso anno, Scientifica lancia la nuova edizione di GlitchZone, la competition dedicata alle start-up che sviluppano soluzioni innovative per la cybersecurity. L’iniziativa �...
Il ricercatore di sicurezza Alessandro Sgreccia, membro del team HackerHood di Red Hot Cyber, ha segnalato a Zyxel due nuove vulnerabilità che interessano diversi dispositivi della famiglia ZLD (ATP ...
La Cybersecurity and Infrastructure Security Agency (CISA) e il Multi-State Information Sharing & Analysis Center (MS-ISAC) pubblicano questo avviso congiunto sulla sicurezza informatica (CSA) in ...