Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Cerca
Banner Ransomfeed 970x120 1
2nd Edition GlitchZone RHC 320x100 2
Massimizza l’Efficienza del Modello: Svela Tecniche di Valutazione Avanzate nel Machine Learning

Massimizza l’Efficienza del Modello: Svela Tecniche di Valutazione Avanzate nel Machine Learning

Marcello Politi : 23 Gennaio 2024 06:59

Nel sempre mutevole mondo del Machine Learning, selezionare il modello più efficace per un determinato compito è un impegno non banale, che può richiedere molto tempo. Tradizionalmente, i metodi di valutazione cosi detti offline, come lo split tra dati di training e test o la k-fold cross validation sono quelli più conosciuti e utilizzati dai data scientist. Tuttavia, possono risultare carenti nel considerare cambiameni della distribuzione che possono verificarsi in scenari reali. In poche parole il modello potrebbe essere stato trainato su dei dati che pero non sono simili a quelli reali che il modello deve gestire quando è in produzione. Entra in gioco la valutazione online, un metodo condotto dopo l’implementazione e il deploy, che offre preziosi dettagli sulle prestazioni del modello in un ambiente dinamico.

Shadow Deployment: Raddoppiare i costi per una scelta consapevole

Il “deployment ombra” comporta il lancio simultaneo di entrambi i modelli, con tutte le richieste dirette a ciascun modello in parallelo. La successiva raccolta di dati consente un’analisi approfondita per identificare il modello che offre le prestazioni migliori. Tuttavia, è essenziale notare che questo approccio comporta uno svantaggio: il costo di inferenza è raddoppiato poiché entrambi i modelli sono interrogati per ciascuna richiesta.

A/B Test: Svelare la Significatività Statistica

Il test A/B, forse il metodo più comunemente utilizzato, comporta il deployment di entrambi i modelli e la suddivisione casuale del traffico tra di essi. La successiva valutazione viene condotta sui log, utilizzando test di ipotesi statistica per accertare se uno dei modelli supera significativamente l’altro. Questo metodo fornisce un robusto quadro statistico per prendere decisioni informate sulla selezione del modello.

Canary Release: Rivelazione Graduale per la Mitigazione del Rischio

In situazioni in cui il rilascio di una nuova versione di un modello comporta rischi potenziali, il metodo di rilascio canary offre un approccio graduale e controllato. Invece di reindirizzare casualmente il traffico con una suddivisione del 50% tra i modelli A e B, una piccola parte del traffico viene reindirizzata al nuovo modello (modello canary). Se il modello canary ha prestazioni positive, il reindirizzamento del traffico aumenta gradualmente fino a gestire il 100% del carico.

Esperimenti Interattivi: Sfruttare il Feedback degli Utenti per la Valutazione

Per i sistemi in cui l’interazione dell’utente svolge un ruolo fondamentale, come nei sistemi di raccomandazione, gli esperimenti interattivi offrono una straordinaria via per la valutazione del modello. Utilizzando contemporaneamente entrambi i modelli, agli utenti viene chiesto di fornire feedback selezionando la loro preferenza. Questo approccio guidato dall’utente offre preziosi dettagli sulle preferenze degli utenti e sull’efficacia di ciascun modello.

Bandit: Bilanciare l’Esplorazione e lo Utilizzo

Mentre il test A/B è spesso considerato un approccio senza stato, i meccanismi di tipo bandit introducono una dimensione con stato alla valutazione del modello. Utilizzando algoritmi complessi, questi meccanismi monitorano continuamente le prestazioni di ciascun modello in tempo quasi reale. Questa valutazione continua consente una redistribuzione dinamica del traffico, cercando un equilibrio tra la sperimentazione del nuovo modello e la minimizzazione dell’impatto complessivo sulle prestazioni del sistema.

Conclusioni

Nel Machine Learning, la ricerca del modello ottimale coinvolge una serie di metodi di valutazione offline e online. Dallo shadow deployment ai test A/B, dai canary release agli esperimenti interattivi e ai meccanismi bandit, ciascun approccio offre una prospettiva unica. Mentre il panorama dell’apprendimento automatico continua a evolversi, una comprensione articolata di questi metodi di valutazione permette agli operatori del settore di prendere decisioni informate, assicurando il rilascio di modelli robusti che resistono alle sfide degli scenari reali.

Immagine del sitoMarcello Politi
Esperto di intelligenza artificiale con una grande passione per l'esplorazione spaziale. Ho avuto la fortuna di lavorare presso l'Agenzia Spaziale Europea, contribuendo a progetti di ottimizzazione del flusso di dati e di architettura del software. Attualmente, sono AI Scientist & Coach presso la PiSchool, dove mi dedico alla prototipazione rapida di prodotti basati sull'intelligenza artificiale. Mi piace scrivere articoli riguardo la data science e recentemente sono stato riconosciuto come uno dei blogger più prolifici su Towards Data Science.

Lista degli articoli

Articoli in evidenza

Immagine del sito
La Wayback Machine “delle anime” sta per arrivare. E anche le polemiche
Di Redazione RHC - 14/11/2025

Molti di noi sono cresciuti con Hiroshi Shiba, di Jeeg robot d’acciaio che parlava con il defunto padre, il Professor Senjiro Shiba, scienziato e archeologo all’interno di un grande elaboratore. I...

Immagine del sito
Google, Amazon e Meta e la loro “Guerra Sottomarina”
Di Redazione RHC - 14/11/2025

Il traffico globale, come sanno i lettori di RHC, viaggia per la maggior parte sotto il mare. Secondo TeleGeography, istituto specializzato nelle telecomunicazioni, nel mondo sono attivi più di 530 s...

Immagine del sito
Una campagna di spionaggio “autonoma” è stata orchestrata dall’intelligenza artificiale
Di Redazione RHC - 14/11/2025

Un’analisi condotta negli ultimi mesi aveva evidenziato come l’evoluzione dei sistemi di intelligenza artificiale stesse raggiungendo un punto critico per la sicurezza informatica, con capacità r...

Immagine del sito
Uno 0day su FortiWeb WAF sfruttato attivamente! E rimuovete le interfacce di Admin da Internet
Di Redazione RHC - 14/11/2025

Gli aggressori stanno attivamente sfruttando una falla critica nel sistema di protezione delle applicazioni web FortiWeb (WAF) prodotto da Fortinet, che potrebbe essere utilizzata come mezzo per condu...

Immagine del sito
Un bug 0Day per un plugin WordPress in vendita a 6000 euro nelle underground
Di Redazione RHC - 14/11/2025

Su uno dei più noti forum russi per la compravendita di vulnerabilità e strumenti offensivi, il thread è arrivato come una normale inserzione commerciale, ma il contenuto è tutt’altro che banale...