Redazione RHC : 10 Settembre 2024 14:08
I ricercatori hanno sviluppato un nuovo metodo di attacco backdoor chiamato NoiseAttack, capace di compromettere più classi contemporaneamente con un minimo di configurazione. A differenza dei precedenti approcci che si concentrano su una singola classe, NoiseAttack utilizza la densità spettrale di potenza del rumore gaussiano bianco (WGN) come trigger invisibile durante la fase di addestramento.
I test sperimentali mostrano che NoiseAttack ottiene alti tassi di successo su diversi modelli e set di dati, eludendo i sistemi di rilevamento delle backdoor più avanzati.
Quando si parla di “più classi” in riferimento a NoiseAttack, si intende che l’attacco non si limita a colpire una sola categoria o classe di dati in un modello di classificazione. Invece, può prendere di mira contemporaneamente più classi, inducendo errori in varie categorie di output. Ciò significa che il modello può essere manipolato per commettere errori in diverse classificazioni contemporaneamente, rendendo l’attacco più versatile e potente.
PARTE LA PROMO ESTATE -40%
RedHotCyber Academy lancia una promozione esclusiva e a tempo limitato per chi vuole investire nella propria crescita professionale nel mondo della tecnologia e della cybersecurity!
Approfitta del 40% di sconto sull’acquisto congiunto di 3 corsi da te scelti dalla nostra Academy. Ad esempio potresti fare un percorso formativo includendo Cyber Threat intelligence + NIS2 + Criptovalute con lo sconto del 40%. Tutto questo lo potrai fruire, dove e quando vuoi e con la massima flessibilità, grazie a lezioni di massimo 30 minuti ciascuna.
Contattaci tramite WhatsApp al 375 593 1011 per richiedere ulteriori informazioni oppure scriviti alla casella di posta [email protected]
Il rumore gaussiano bianco (WGN) utilizzato in NoiseAttack è impercettibile e applicato universalmente, ma attivato solo su campioni selezionati per indurre classificazioni errate su più etichette target.
Questo metodo consente un attacco backdoor multi-target su modelli di deep learning senza compromettere le prestazioni sugli input non compromessi.
Addestrando il modello su un dataset contaminato con WGN accuratamente applicato, gli avversari possono causare classificazioni errate intenzionali, superando le difese avanzate e offrendo grande flessibilità nel controllo delle etichette di destinazione.
Il framework elude efficacemente le difese all’avanguardia e raggiunge alti tassi di successo degli attacchi su vari set di dati e modelli. Introducendo rumore gaussiano bianco nelle immagini di input, NoiseAttack può classificarle erroneamente in etichette mirate senza influire in modo significativo sulle prestazioni del modello su dati puliti.
Attraverso analisi teoriche ed esperimenti approfonditi, gli autori dimostrano la fattibilità e l’ubiquità di questo attacco. NoiseAttack raggiunge alti tassi di successo medi degli attacchi su vari set di dati e modelli senza influire in modo significativo sulla precisione per le classi di non vittime.
Dopo la chiusura della piattaforma di phishing Darcula e del software Magic Cat utilizzato dai truffatori, la soluzione Magic Mouse ha guadagnato popolarità tra i criminali. Secondo gli specialis...
Gli analisti di Binarly hanno trovato almeno 35 immagini su Docker Hub ancora infette da una backdoor che ha penetrato xz Utils l’anno scorso. I ricercatori hanno avvertito che questo potrebbe ...
Tre gravi vulnerabilità di Microsoft Office, che potrebbero permettere agli aggressori di eseguire codice remoto sui sistemi colpiti, sono state risolte da Microsoft con il rilascio di aggiorname...
Dalle macchine che apprendono a quelle che si auto migliorano: il salto evolutivo che sta riscrivendo il codice del futuro Mentre leggete questo articolo, molto probabilmente, in un data center del mo...
Trend Micro ha rilevato un attacco mirato ai settori governativo e aeronautico in Medio Oriente, utilizzando un nuovo ransomware chiamato Charon. Gli aggressori hanno utilizzato una complessa catena d...