Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Cerca
Banner Ancharia Desktop 1 1
TM RedHotCyber 320x100 042514
Architettura e funzionamento delle Recurrent Neural Networks

Architettura e funzionamento delle Recurrent Neural Networks

Simone Raponi : 10 Agosto 2023 09:28

Benvenuti alla seconda parte della nostra serie di articoli sulle reti neurali ricorrenti (RNN). Nel nostro precedente articolo, abbiamo fornito una panoramica generale delle RNN, esaminando il loro ruolo nell’ambito dell’intelligenza artificiale e del machine learning. In questo articolo, ci immergeremo più profondamente nell’architettura e nel funzionamento delle RNN, esplorando la loro unicità e la loro potenza nel trattamento dei dati sequenziali.

Un’immagine che mostra l’architettura di una RNN

Architettura di una Recurrent Neural Network

Le RNN, come suggerisce il loro nome, sono caratterizzate da connessioni “ricorrenti”. Questo significa che hanno cicli nei loro percorsi di calcolo, a differenza delle reti neurali feedforward (FNN), in cui le informazioni fluiscono solo in una direzione, dall’input all’output.

L’architettura di una RNN è costituita da uno strato di input, uno o più strati nascosti e uno strato di output. Ogni strato è composto da un insieme di neuroni artificiali o nodi. La caratteristica distintiva delle RNN è che i nodi nello strato nascosto hanno una connessione “ricorrente”, ovvero una connessione che forma un ciclo, permettendo alle informazioni di circolare all’interno dello strato.


Enterprise

Prova la Demo di Business Log! Adaptive SOC italiano
Log management non solo per la grande Azienda, ma una suite di Audit file, controllo USB, asset, sicurezza e un Security Operation Center PERSONALE, che ti riporta tutte le operazioni necessarie al tuo PC per tutelare i tuoi dati e informati in caso di problemi nel tuo ambiente privato o di lavoro. Scarica ora la Demo di Business Log per 30gg


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

Questa struttura permette a una RNN di conservare un “stato nascosto” che mantiene l’informazione sulla sequenza dei dati fino a quel momento. Questo stato nascosto agisce come una sorta di memoria, permettendo alla rete di ricordare l’informazione passata e di usarla per fare previsioni sul futuro.

Per capire come questo funziona in pratica, potrebbe essere utile un esempio. Immaginiamo una RNN progettata per tradurre una frase dall’inglese all’italiano. Quando la rete elabora la frase “I love reading”, deve essere in grado di ricordare la relazione tra “I” e “love”, e tra “love” e “reading”, per tradurre correttamente la frase in “Io amo leggere”. Questo è possibile grazie allo stato nascosto, che conserva le informazioni sui termini precedenti nella sequenza.

Come funziona una Recurrent Neural Network?

Per comprendere il funzionamento interno di una RNN, è utile immaginare la rete “spiegata” (unfold) nel tempo. Questa è una tecnica comune utilizzata per visualizzare l’elaborazione sequenziale in una RNN. In questa rappresentazione, ogni passo temporale della sequenza viene mostrato come un nodo separato nella rete.

Quando una RNN processa una sequenza di dati, inizia dall’inizio della sequenza e aggiorna il suo stato nascosto ad ogni passo temporale. Questo aggiornamento dello stato nascosto è calcolato in base al dato corrente e allo stato nascosto precedente.

In termini matematici, lo stato nascosto a un certo passo temporale t (denotato come hT) viene calcolato come segue:

hT = f(Whh * h(t-1) + Whx * xt)

In questa formula, Whh e Whx sono matrici di pesi che la rete apprende durante il training, xt è il dato di input al passo temporale t, e f è una funzione di attivazione non lineare, come la tangente iperbolica (tanh) o la funzione ReLU (Rectified Linear Unit).

Una volta calcolato il nuovo stato nascosto ht, la RNN produce un output per il passo temporale corrente. Questo output è in genere calcolato utilizzando una funzione di attivazione softmax, che produce un vettore di probabilità per le possibili previsioni.

Il processo descritto viene ripetuto per ogni passo temporale della sequenza. Alla fine della sequenza, la RNN avrà prodotto una serie di output, uno per ogni passo temporale.

Variazioni dell’architettura RNN

Mentre l’architettura base delle RNN è potente, esistono diverse varianti che cercano di superare alcuni dei suoi limiti. Due delle varianti più note sono le Long Short-Term Memory (LSTM) e le Gated Recurrent Unit (GRU), che introducono nuovi meccanismi per controllare come le informazioni vengono passate attraverso la rete. Queste varianti saranno oggetto di discussione più approfondita nel nostro quarto articolo.

Conclusioni

In questo articolo, abbiamo esplorato l’architettura e il funzionamento delle RNN. Questi concetti fondamentali ci aiutano a capire come le RNN siano in grado di gestire dati sequenziali in modo così efficace, rendendole strumenti potenti per l’elaborazione del linguaggio naturale, la previsione delle serie temporali e molto altro ancora.

Tuttavia, come vedremo nel prossimo articolo, le RNN non sono senza sfide. Il problema della “scomparsa del gradiente” è una questione critica che può rendere difficile l’addestramento delle RNN su lunghe sequenze. Inoltre, esistono diverse varianti dell’architettura RNN, come le LSTM e le GRU, che cercano di superare alcuni dei limiti delle RNN standard. Esploreremo queste sfide e le possibili soluzioni nel nostro prossimo articolo.

Riferimenti e Approfondimenti

Per coloro che sono interessati a esplorare ulteriormente l’architettura e il funzionamento delle RNN, consigliamo le seguenti risorse:

Recurrent Neural Networks by Example in Python: Un tutorial pratico che mostra come costruire una RNN in Python.

The Unreasonable Effectiveness of Recurrent Neural Networks: Un post del blog di Andrej Karpathy che esplora l’efficacia delle RNN attraverso vari esperimenti.

Deep Learning Book – Chapter 10: Un capitolo del libro “Deep Learning” di Ian Goodfellow, Yoshua Bengio e Aaron Courville, che offre un approfondimento tecnico sulle RNN e le loro varianti.

Immagine del sitoSimone Raponi
Esperto in machine learning e sicurezza informatica. Ha un dottorato in Computer Science and Engineering, durante il quale ha sviluppato modelli di intelligenza artificiale per rilevare pattern correlati alla cybersecurity. Durante la sua carriera accademica ha ricevuto diversi riconoscimenti ed ha pubblicato numerosi articoli scientifici divenuti popolari nell'ambito. Ex Machine Learning Scientist alla NATO, attualmente lavora come AI/ML Cybersecurity Engineer per una startup, dove impiega quotidianamente algoritmi di AI per affrontare e risolvere complesse sfide nel campo dell'automazione della sicurezza informatica.

Lista degli articoli

Articoli in evidenza

Immagine del sito
Altro che Marketing! Le VPN si vendono da sole ogni volta che un governo blocca i siti per adulti
Di Redazione RHC - 11/11/2025

Centinaia di milioni di utenti di smartphone hanno dovuto affrontare il blocco dei siti web pornografici e l’obbligo di verifica dell’età. Nel Regno Unito è in vigore la verifica obbligatoria de...

Immagine del sito
Sicurezza Wi-Fi: Evoluzione da WEP a WPA3 e Reti Autodifensive
Di Francesco Demarcus - 11/11/2025

Dalle fragilità del WEP ai progressi del WPA3, la sicurezza delle reti Wi-Fi ha compiuto un lungo percorso. Oggi, le reti autodifensive rappresentano la nuova frontiera: sistemi intelligenti capaci d...

Immagine del sito
Inside Out: perché la Tristezza è il tuo miglior firewall
Di Daniela Farina - 11/11/2025

Siamo ossessionati da firewall e crittografia. Investiamo miliardi in fortezze digitali, ma le statistiche sono inesorabili: la maggior parte degli attacchi cyber non inizia con un difetto nel codice,...

Immagine del sito
Alle Origini di UNIX: il Nastro dei Bell Labs ritrovato in uno scantinato dell’Università dello Utah
Di Redazione RHC - 10/11/2025

Un raro ritrovamento risalente ai primi giorni di Unix potrebbe riportare i ricercatori alle origini stesse del sistema operativo. Un nastro magnetico etichettato “UNIX Original From Bell Labs V4 (V...

Immagine del sito
21 anni di Firefox: una storia di innovazione e indipendenza
Di Redazione RHC - 10/11/2025

Il 9 novembre ha segnato il 21° anniversario di Firefox 1.0. Nel 2004, è stata la prima versione stabile del nuovo browser di Mozilla, che si è subito posizionato come un’alternativa semplice e s...