Red Hot Cyber
La cybersecurity è condivisione. Riconosci il rischio, combattilo, condividi le tue esperienze ed incentiva gli altri a fare meglio di te.
Cerca

Google “Distilling Step by Step”: Come ottimizzare modelli linguistici di grandi dimensioni per l’uso pratico

Marcello Politi : 14 Dicembre 2023 09:50

Ad oggi, i large language models (LLMs) hanno dimensioni enormi e inoltre vengono utilizzati in molti software per permettere agli utenti di compiere azioni utilizzando semplicemente il linguaggio naturale.

Le recenti ricerche sull’intelligenza artificiale hanno dimostrato che i modelli linguistici di grandi dimensioni hanno buone capacità di generalizzazione permettendoci di utilizzare lo zero-shot learning, cioè poter chiedere al modello di risolvere un task per il quale non è stato addestrato.

Pensate che un modello come PaLM ha un totale di 540 miliardi di parametri, e questo non è neanche tra i modelli più grandi di oggi! Molte aziende desiderano utilizzare questi LLM e personalizzarli in base ai propri casi d’uso. Il problema è che utilizzare questi modelli in produzione in modo indipendente non è sempre fattibile in termini di costi e di hardware disponibile.

Distilling Step-by-step

Vuoi diventare un esperto del Dark Web e della Cyber Threat Intelligence (CTI)?
Stiamo per avviare il corso intermedio in modalità "Live Class", previsto per febbraio.
A differenza dei corsi in e-learning, disponibili online sulla nostra piattaforma con lezioni pre-registrate, i corsi in Live Class offrono un’esperienza formativa interattiva e coinvolgente.
Condotti dal professor Pietro Melillo, le lezioni si svolgono online in tempo reale, permettendo ai partecipanti di interagire direttamente con il docente e approfondire i contenuti in modo personalizzato. Questi corsi, ideali per aziende, consentono di sviluppare competenze mirate, affrontare casi pratici e personalizzare il percorso formativo in base alle esigenze specifiche del team, garantendo un apprendimento efficace e immediatamente applicabile.
Per ulteriori informazioni, scrivici ad [email protected] oppure scrivici su Whatsapp al 379 163 8765 

Supporta RHC attraverso:


Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.

In un recente paper di Google AI, “Distilling Step by Step”, gli autori propongono un approccio per distillare la conoscenza di modelli di grandi dimensioni (540B PaLM) in uno molto più piccolo (770M-T5, 6GB RAM). La tecnica del distilling in generale consiste nell’utilizzare un modello molto grande per insegnare ad un modello più piccolo di comportarsi allo stesso modo. In questo modo potremo mettere in produzione solamente il modello più piccolo con prestazioni di poco inferiori.

Esistono due metodi principale che vengono utilizzati per customizzare un LLM a un caso d’uso specifico:

  • Fine-Tuning: Il metodo di fine-tuning prevede l’introduzione di layer aggiuntivi alla fine di un modello pre-addestrato. Questo nuovo modello viene ulteriormente addestrato utilizzando un dataset supervisionato. Tuttavia questo metodo, richiede un notevole dispendio di RAM e di computazione, quindi GPU.
  • Task Distillation: Come abbiamo detto, gli LLM di grandi dimensioni offrono la capacità chiamata di zero-shot. La distillazione dei task prevede la generazione di pseudo-label, con i modelli di grandi dimensioni e l’addestramento del modello più piccolo nel task specifico. In poco parole mi fido del modello grande per generare dai label che per me sono “giuste” e che il modello piccolo deve imparare a predirre.

Nel paper, gli autori riformulano il problema della distillazione della conoscenza come un problema multi-task, utilizzando la generazione di rationale nella fase di addestramento.

Quali sono gli step da seguire?

  • Il modello più grande si comporta da insegnante e fornisce i rationales (cioè la motivazione) utilizzando la tecnica di prompting detta Chain-of-Thought (CoT), in modo da portare il LLM a generare sia un ouptut che la spiegazione o rationale di quell’output.
  • Il modello studente impara a produrre sia le label che le motivazioni simultaneamente, dato un prompt o testo in ingresso (apprendimento multi-task).
  • In questo modo, il modello studente impara a ragionare come l’insegnante ed elimina la necessità di utilizzare l’LLM insegnante in inferenza, e quindi in produzione.

Nello specifico l’apprendimento multi-task è un paradigma di apprendimento in cui il modello impara a svolgere più compiti/produrre più output simultaneamente al momento dell’addestramento (nel nostro caso label e rationale). Questo modello viene addestrato utilizzando una funzione loss che compone le loss di ogni singolo task:

Altri metodi

C’è un grande interesse per le tecniche che permettono di ridurre le risorse necessarie per l’esecuzione di nuovi modelli di Machine Learning. In letteratura scientifica possiamo trovare diversi metodi per la compressione di tali modelli. Tra i più importanti abbiamo:

  • Quantizzazione: diminuisce la precisione dei pesi per migliorare l’efficienza. Cioè rappresentiamo i pesi della rete neurale usando meno bit.
  • Pruning: consiste nel ridurre il numero di pesi eliminando le connessioni tra neuroni o eliminando i neuroni stessi.
  • Distillazione della conoscenza: il funzionamento di questa tecnica prevede l’utilizzo di un modello più grande chiamato “insegnante” e un modello più piccolo chiamato “studente”. Lo studente viene istruito ad imitare l’insegnate.
  • Low-rank tensor decomposition: questa tecnica consiste nel sostituire le grandi matrici che rappresentano i layer della rete, con diverse matrici più piccole. Questo accelera molto i tempi di inferenza della rete.

Conclusioni

Se vi è piaciuto questo articolo, potreste essere interessati a saperne di più riguardo le tecniche di compressione quindi vi proprongo un mio recente articolo: Ottimizzare Modelli di Deep Learning in produzione.

Se volete implementare la distillazione della conoscenza o altre tecniche, potete consultare le seguenti librerie:

Marcello Politi
Esperto di intelligenza artificiale con una grande passione per l'esplorazione spaziale. Ho avuto la fortuna di lavorare presso l'Agenzia Spaziale Europea, contribuendo a progetti di ottimizzazione del flusso di dati e di architettura del software. Attualmente, sono AI Scientist & Coach presso la PiSchool, dove mi dedico alla prototipazione rapida di prodotti basati sull'intelligenza artificiale. Mi piace scrivere articoli riguardo la data science e recentemente sono stato riconosciuto come uno dei blogger più prolifici su Towards Data Science.

Lista degli articoli

Articoli in evidenza

Matteo Salvini è stato hackerato? Un criminale mette in vendita le sue email per 250 dollari

Un post pubblicato un’ora fa su un noto forum underground ha attirato l’attenzione degli osservatori della sicurezza informatica: un utente con lo pseudonimo “elpatron85” h...

Allarme infostealer: pubblicate email del Comune di Gorizia e aziende italiane

Nelle ultime ore, un noto canale Telegram pubblico collegato ai forum underground ha pubblicato una lista di email aziendali provenienti da Italia e Germania. Il messaggio, visibile in uno screenshot ...

RVTools e Zenmap usati per diffondere Bumblebee: anche Google e Bing nel mirino

È stato recentemente rivelato che il loader Bumblebee è stato distribuito tramite il sito web hackerato RVTools. A quanto pare, gli hacker stanno anche sfruttando la popolarità...

Sarcoma Ransomware: l’anatomia di una minaccia silenziosa ma spietata

Nel panorama sempre più affollato e inquietante del cybercrimine internazionale, una nuova figura ha cominciato ad attirare l’attenzione degli analisti di sicurezza di tutto il mondo: Sarc...

E’ Cyber-caos negli USA! I tagli ai fondi mettono in ginocchio la Sicurezza Nazionale

Il sistema di sicurezza informatica degli Stati Uniti si trova ora ad affrontare una doppia minaccia: la crescente attività dei criminali informatici e i massicci tagli al personale federale. Mic...