Problemi delle Recurrent Neural Networks: Scomparsa del Gradiente
Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Cerca
LECS 970x120 1
TM RedHotCyber 320x100 042514
Problemi delle Recurrent Neural Networks: Scomparsa del Gradiente

Problemi delle Recurrent Neural Networks: Scomparsa del Gradiente

Simone Raponi : 11 Agosto 2023 22:22

Benvenuti al terzo articolo della nostra serie dedicata alle reti neurali ricorrenti (RNN). Dopo aver introdotto le Recurrent Neural Networks e la loro architettura, rispettivamente nel primo e nel secondo articolo, in questo articolo affronteremo un problema comune che le affligge: la temibile scomparsa del gradiente.

Che cos’è la scomparsa del gradiente?

Per comprendere pienamente il problema della scomparsa del gradiente, dobbiamo prima discutere di come le Recurrent Neural Networks vengono addestrate. Come altre reti neurali, le RNN utilizzano un algoritmo chiamato backpropagation per aggiornare i loro pesi. Abbiamo brevemente descritto il funzionamento dell’algoritmo di backpropagation nell’ambito delle Convolutional Neural Networks in un precedente articolo. Nell’ambito delle Recurrent Neural Networks, questa tecnica è spesso chiamata “backpropagation through time” (BPTT), perché l’algoritmo “ripercorre” la sequenza temporale per aggiornare i pesi, come se tornasse indietro nel tempo!

Durante la backpropagation through time, vengono calcolati i gradienti dei pesi. Il gradiente rappresenta la direzione e l’intensità del cambiamento necessario per migliorare la performance della rete. Questi gradienti sono utilizzati per aggiornare i pesi della rete in modo che la funzione di errore (o di perdita) sia minimizzata.


Christmas Sale

Christmas Sale -40%
𝗖𝗵𝗿𝗶𝘀𝘁𝗺𝗮𝘀 𝗦𝗮𝗹𝗲! Sconto del 𝟰𝟬% 𝘀𝘂𝗹 𝗽𝗿𝗲𝘇𝘇𝗼 𝗱𝗶 𝗰𝗼𝗽𝗲𝗿𝘁𝗶𝗻𝗮 del Corso "Dark Web & Cyber Threat Intelligence" in modalità E-Learning sulla nostra Academy!🚀 Fino al 𝟯𝟭 𝗱𝗶 𝗗𝗶𝗰𝗲𝗺𝗯𝗿𝗲, prezzi pazzi alla Red Hot Cyber Academy. 𝗧𝘂𝘁𝘁𝗶 𝗶 𝗰𝗼𝗿𝘀𝗶 𝘀𝗰𝗼𝗻𝘁𝗮𝘁𝗶 𝗱𝗲𝗹 𝟰𝟬% 𝘀𝘂𝗹 𝗽𝗿𝗲𝘇𝘇𝗼 𝗱𝗶 𝗰𝗼𝗽𝗲𝗿𝘁𝗶𝗻𝗮.
Per beneficiare della promo sconto Christmas Sale, scrivici ad [email protected] o contattaci su Whatsapp al numero di telefono: 379 163 8765.


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

Il problema della scomparsa del gradiente si verifica quando i gradienti calcolati durante la backpropagation diventano molto piccoli. Quando il gradiente è vicino a zero, l’aggiornamento dei pesi durante il training è quasi inesistente, il che significa che la rete smette di apprendere o impiega molto tempo per farlo.

Questo problema è particolarmente grave nelle RNN a causa della loro natura sequenziale. Quando una RNN viene addestrata su lunghe sequenze di dati, l’informazione deve essere “trasportata” per molti passaggi temporali attraverso la backpropagation. Ma se i gradienti diventano troppo piccoli, l’informazione può “scomparire” prima di raggiungere i passaggi temporali iniziali.

Perché si verifica la scomparsa del gradiente?

La scomparsa del gradiente nelle RNN è legata alla funzione di attivazione utilizzata nei neuroni e al modo in cui i gradienti vengono calcolati durante la backpropagation.

Nelle RNN, la funzione di attivazione più comunemente utilizzata è la tangente iperbolica (tanh). Questa funzione ha un range di -1 a 1, e la sua derivata (che è utilizzata per calcolare i gradienti) è massima a 0 e si avvicina a 0 per valori di input lontani da 0.

Durante la backpropagation, i gradienti vengono calcolati moltiplicando la derivata della funzione di attivazione per il gradiente del passo temporale successivo. Se il valore della derivata della funzione di attivazione è basso, allora il valore del gradiente calcolato sarà anch’esso basso. E se questa operazione viene ripetuta per molti passaggi temporali (come in una lunga sequenza), i gradienti possono diventare estremamente piccoli, dando luogo al problema della scomparsa del gradiente.

Soluzioni al problema della scomparsa del gradiente

Il problema della scomparsa del gradiente nelle RNN è noto da tempo, e sono state proposte diverse soluzioni. Le due soluzioni più comuni sono l’uso di altre funzioni di attivazione e l’uso di architetture di RNN modificate.

Invece di utilizzare la funzione di attivazione tanh, alcune RNN utilizzano la funzione ReLU (Rectified Linear Unit). La ReLU ha una derivata che è sempre 1 per input positivi, il che aiuta a mitigare la scomparsa del gradiente. Tuttavia, la ReLU ha anche dei problemi, come il fatto che la sua derivata è 0 per input negativi, il che può portare al “dormiveglia dei neuroni” (un problema in cui alcuni neuroni nella rete cessano di contribuire all’apprendimento).

Un’altra soluzione è l’uso di architetture di RNN modificate, come le Long Short-Term Memory (LSTM) e le Gated Recurrent Unit (GRU). Queste architetture introducono dei “gate” che controllano il flusso di informazioni attraverso la rete. Questi gate aiutano a mitigare sia il problema della scomparsa del gradiente che il problema correlato dell’esplosione del gradiente. Esploreremo queste architetture più in dettaglio nel prossimo articolo.

Conclusioni

La scomparsa del gradiente è un problema significativo che rende difficile l’addestramento delle RNN su lunghe sequenze. Tuttavia, grazie alla ricerca e agli sforzi di sviluppo continuo nel campo del deep learning, esistono soluzioni che possono mitigare questo problema.

Nel prossimo articolo della nostra serie, esploreremo in dettaglio due di queste soluzioni: le Long Short-Term Memory (LSTM) e le Gated Recurrent Unit (GRU). Queste architetture avanzate hanno rivoluzionato l’uso delle RNN, rendendo possibile l’apprendimento su sequenze di dati molto più lunghe e complesse.

Riferimenti e Approfondimenti

Se siete interessati a saperne di più sul problema della scomparsa del gradiente e sulle soluzioni proposte, consigliamo le seguenti risorse:

  1. Understanding LSTM Networks: Un post del blog di Christopher Olah che spiega il funzionamento delle LSTM, una soluzione comune al problema della scomparsa del gradiente.
  2. Vanishing gradients & LSTMs: Un articolo di Anish Singh che discute il problema della scomparsa del gradiente e l’approccio delle LSTM.
  3. Deep Learning Book – Chapter 10: Un capitolo del libro “Deep Learning” di Ian Goodfellow, Yoshua Bengio e Aaron Courville, che offre una discussione tecnica sulle RNN, la scomparsa del gradiente e le soluzioni proposte.

Immagine del sitoSimone Raponi
Esperto in machine learning e sicurezza informatica. Ha un dottorato in Computer Science and Engineering, durante il quale ha sviluppato modelli di intelligenza artificiale per rilevare pattern correlati alla cybersecurity. Durante la sua carriera accademica ha ricevuto diversi riconoscimenti ed ha pubblicato numerosi articoli scientifici divenuti popolari nell'ambito. Ex Machine Learning Scientist alla NATO, attualmente lavora come AI/ML Cybersecurity Engineer per una startup, dove impiega quotidianamente algoritmi di AI per affrontare e risolvere complesse sfide nel campo dell'automazione della sicurezza informatica.

Lista degli articoli

Articoli in evidenza

Immagine del sito
MITRE pubblica la lista delle TOP25 debolezze software più pericolose del 2025
Di Redazione RHC - 13/12/2025

Il MITRE ha reso pubblica la classifica delle 25 più pericolose debolezze software previste per il 2025, secondo i dati raccolti attraverso le vulnerabilità del national Vulnerability Database. Tali...

Immagine del sito
Il Day-One del Caos di React2Shell! Spie, criminali e cryptominer si contendono i server
Di Redazione RHC - 13/12/2025

Un recente resoconto del gruppo Google Threat Intelligence (GTIG) illustra gli esiti disordinati della diffusione di informazioni, mettendo in luce come gli avversari più esperti abbiano già preso p...

Immagine del sito
Agenzia delle Entrate: accesso admin in vendita a 500$? Ecco perché i conti non tornano
Di Vincenzo Miccoli - 13/12/2025

All’interno del noto Dark Forum, l’utente identificato come “espansive” ha messo in vendita quello che descrive come l’accesso al pannello di amministrazione dell’Agenzia delle Entrate. Tu...

Immagine del sito
Apple aggiorna due bug 0day critici in iOS, presumibilmente abusati dagli spyware
Di Redazione RHC - 13/12/2025

In seguito alla scoperta di due vulnerabilità zero-day estremamente critiche nel motore del browser WebKit, Apple ha pubblicato urgentemente degli aggiornamenti di sicurezza per gli utenti di iPhone ...

Immagine del sito
Esce Kali Linux 2025.4! Miglioramenti e Novità nella Distribuzione per la Sicurezza Informatica
Di Redazione RHC - 12/12/2025

La recente edizione 2025.4 di Kali Linux è stata messa a disposizione del pubblico, introducendo significative migliorie per quanto riguarda gli ambienti desktop GNOME, KDE e Xfce. D’ora in poi, Wa...