Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Condividi la tua difesa. Incoraggia l'eccellenza.
La vera forza della cybersecurity risiede
nell'effetto moltiplicatore della conoscenza.
Fortinet 970x120px
LECS 320x100 1
L’Arte dell’Inversione: Hidden Learning e il Futuro delle Minacce Informatiche

L’Arte dell’Inversione: Hidden Learning e il Futuro delle Minacce Informatiche

6 Ottobre 2023 08:06

Alcuni di voi possono pensare che la data science e la cybersecurity siano due mondi separati, ma in realtà esistono interconnessioni significative tra le due discipline. 

Dalla nascita del MLaaS, Machine Learning as a service, è diventato di fondamentale importanza capire i problemi che i modelli di Machine Learning possono comportare a livello di privacy e sicurezza.

Uno dei problemi più studiati è quello del Model Inversion Attack, che è un tipo di attacco in cui si cerca di inferire le informazioni riguardo un sogetto usando l’output di un modello di Machine Learning che questo ha usato.


Cyber Offensive Fundamentale Ethical Hacking 02

Avvio delle iscrizioni al corso Cyber Offensive Fundamentals
Vuoi smettere di guardare tutorial e iniziare a capire davvero come funziona la sicurezza informatica?
La base della sicurezza informatica, al di là di norme e tecnologie, ha sempre un unico obiettivo: fermare gli attacchi dei criminali informatici. Pertanto "Pensa come un attaccante, agisci come un difensore". Ti porteremo nel mondo dell'ethical hacking e del penetration test come nessuno ha mai fatto prima. Per informazioni potete accedere alla pagina del corso oppure contattarci tramite WhatsApp al numero 379 163 8765 oppure scrivendoci alla casella di posta [email protected].


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

In questo articolo però vorrei porre la vostra attenzione a un caso ancora più specifico per introdurvi quello che viene chiamato Hidden Learning.

Setting

Immaginate di essere uno user, e di volerlo utilizzare una Neural Network fornitavi da una compagnia. Voi utilizzerete la rete dandogli in input dei dati sensibili per ricevere un output. Magari state usando un’app che crea un avatar da una vostra foto per esempio.

Siccome prima di usare l’app avete letto policy riguardo la privacy, siete certi però che la compagnia puo accedere esclusivamente all’output della rete e non alla vostra foto in input, quindi i vostri dati sensibili sono al sicuro. Ma in realtà, questo non vuol dire che la compagnia non possa utilizzare l’output per inferire qualche informazione sul vostro input. Questo potrebbe essere possibile se la compagnia ha utilizzato l’Hidden Learning.

Hidden Learning Framework

Mettiamoci adesso dal lato dell’attaccante, quindi nel caso precedente dal lato della compagnia. Quello che facciamo è di creare una rete ufficiale No che effettivamente risolva il task ufficiale To che gli user si aspettano, ma nello stesso momento creiamo una rete segreta Ns che risolve un altro task segreto Ts.

(src: https://hal.science/hal-03157141/file/hidden_learning.pdf)

Il modello sarà trainato in contemporanea facendo una combinazione dell’output del task ufficiale e del task segreto, questa combinazione potrebbe essere banalmente la somma delle loss. Quindi la rete imparerà in contemporanea a risolvere entrambi i task.

Questa rete non desterà sospetti perché il modello avrà una grande performance sul task ufficiale, quasi stato dell’arte, non ci sarà un grande downgrade, ma in più avremo la seconda parte della rete il cui task sarà quello di estrarre dall’output ottenuto di nuovo le informazioni contenute nell’input, un pò come funziona per gli autoencoder. 

Perchè questo framework è pericoloso?

Immaginate durante un emergenza medica come quella del Covid-19 il governo che chiede ad una compagnia privata di sviluppare un’app che consenta di predire se una persona potrebbe manifestare sintomi gravi. Il codice non è open source e quindi non può essere controllato dalla community.

Se questa compagnia adottaste questo framework, potrebbe risalire a informazioni sensibili come il fatto, se la persona soffriva di malattia cardiovascolari o altro ancora.

Conclusioni

L’Hidden Learning è un framework semplice che permette di allenare una rete per risolvere un task segreto. Le performance del task originale vengono degradate non raggiungendo lo state dell’arte ma rimangono comunque molto buone da non destare sospetti.

L’output di una prima rete viene passata ad una seconda rete segreta che ricostruisce le informazioni di partenza. Questo può portare ad un data leackage, ed è un campo in cui si continuerà a fare molta ricerca.

Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Marcello Politi 300x300
Esperto di intelligenza artificiale con una grande passione per l'esplorazione spaziale. Ho avuto la fortuna di lavorare presso l'Agenzia Spaziale Europea, contribuendo a progetti di ottimizzazione del flusso di dati e di architettura del software. Attualmente, sono AI Scientist & Coach presso la PiSchool, dove mi dedico alla prototipazione rapida di prodotti basati sull'intelligenza artificiale. Mi piace scrivere articoli riguardo la data science e recentemente sono stato riconosciuto come uno dei blogger più prolifici su Towards Data Science.

Articoli in evidenza

Immagine del sitoCybercrime
Morte on demand: le reti digitali che trasformano i ragazzi e i disabili in killer
Redazione RHC - 13/01/2026

Negli ultimi mesi si sta parlando sempre più spesso di un cambio di paradigma nel cybercrime. Quello che per anni è stato percepito come un ecosistema prevalentemente digitale — fatto di frodi, furti di identità,…

Immagine del sitoCybercrime
Basta un riavvio: il trucco che spegne Windows Defender prima ancora che parta
Redazione RHC - 13/01/2026

A volte, per disattivare la protezione di Windows non è necessario attaccare direttamente l’antivirus. È sufficiente impedirne il corretto avvio. Un ricercatore che si fa chiamare Two Seven One Three (TwoSevenOneT) ha pubblicato su GitHub…

Immagine del sitoCultura
La mente dietro le password: Errore umano? No, un legame che non c’è. Puntata 4
Simone D'Agostino - 13/01/2026

Quando la sicurezza fallisce prima ancora dell’errore Questo testo nasce dall’esperienza diretta, maturata osservando nel tempo numerosi casi di frodi e incidenti informatici, in cui il fattore umano nella sicurezza è stato l’elemento che ha…

Immagine del sitoCultura
Burnout: un allarme di sistema nell’IT e nella Cyber Security aziendale
Paloma Donadi - 13/01/2026

Nel mondo della cybersecurity si parla spesso di attacchi, vulnerabilità, incidenti. Si parla meno di una variabile silenziosa che attraversa tutto il settore: la fatica. Non la stanchezza di fine giornata, ma una fatica più…

Immagine del sitoCyberpolitica
Quando il segnale muore, il potere vince: il blackout digitale dell’Iran
Roberto Villani - 13/01/2026

A volte le cose importanti non arrivano in conferenza stampa. Arrivano come un grafico che smette di respirare: la linea della connettività che crolla, l’OSINT che si inaridisce, il rumore che cresce perché il segnale…