Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Condividi la tua difesa. Incoraggia l'eccellenza.
La vera forza della cybersecurity risiede
nell'effetto moltiplicatore della conoscenza.
LECS 970x120 1
320x100 Itcentric
Cos’è la Retrieval Augmented Generation

Cos’è la Retrieval Augmented Generation

27 Agosto 2024 07:32

Nell’articolo “Perché un Large Language Model (LLM) non è un Database?”, abbiamo esplorato la natura di questa tecnologia, chiarendo come dovrebbe essere utilizzata e, soprattutto, quali sono i suoi limiti. Tra questi, il più significativo è la limitazione della conoscenza del modello a un determinato periodo di tempo, definito dai dati di addestramento (Cutoff Knowledge). Questo comporta il rischio di ricevere risposte obsolete o, in alcuni casi, apparentemente coerenti ma fattualmente errate (le cosiddette allucinazioni).

Una tecnica emergente che consente di superare questi limiti è la Retrieval-Augmented Generation (RAG). La RAG rappresenta un avanzamento significativo nel campo del Natural Language Processing (NLP), combinando le capacità di generazione di linguaggio naturale con quelle di recupero di informazioni. Questa tecnica è particolarmente rilevante in applicazioni che richiedono una comprensione profonda e contestuale del linguaggio e la distribuzione di informazioni affidabili. La RAG si distingue per la sua capacità di migliorare la generazione di testi, incorporando informazioni aggiornate e pertinenti direttamente da database o altre fonti di dati esterne.

A che cosa serve

Nei sistemi di generazione del testo basati su LLM, uno dei principali limiti è la dipendenza esclusiva dal modello generativo, che è vincolato alla conoscenza acquisita durante l’addestramento. Immaginiamo che una grande testata giornalistica voglia mettere a disposizione dei propri lettori un chatbot che fornisce informazioni sugli ultimi eventi relativi, per esempio, alla guerra in Ucraina. Per poter abilitare un LLM a rispondere su fatti di attualità è necessario permettergli di accedere a tali informazioni.

Solitamente le opzioni disponibili sono:

  1. nuovo training completo del modello su una massa consistente di dati aggiornati.
  2. un fine-tuning del modello utilizzando i dati di interesse.
  3. inserire i nuovi dati nel prompt che inviamo al modello.

Le opzioni 1 e 2 sono da scartare in quanto le informazioni che deve fornire il chatbot cambiano ogni giorno. Inoltre, sono operazioni altamente costose e complesse ed è bene sottolineare che training e fine-tuning sono tecniche di addestramento mirate a migliorare la performance del modello nella comprensione e generazione del testo. L’accrescimento della base di conoscenza del modello è solo un effetto collaterale.

Invece, l’opzione 3 potrebbe risolvere il nostro problema, ma dobbiamo considerare il limite superiore della lunghezza della finestra di contesto del modello (in poche parole la lunghezza massima del testo che possiamo fornire in input al modello). Infatti, dovremmo sottomettere al Large Language Model un prompt di lunghezza crescente nel tempo che potrebbe eccedere la lunghezza massima accettata dal modello che abbiamo scelto di utilizzare. Per non parlare poi dei costi di elaborazione di input testuali molto lunghi che, se proiettati su tutti i lettori, diverrebbero altamente significativi.

Come funziona

La metodologia RAG affronta questo problema in modo intelligente integrando un sistema di recupero delle informazioni che fornisce al modello generativo dati aggiornati e rilevanti, limitando così i costi e la lunghezza dell’input testuale inviato. 

In pratica, quando un sistema RAG riceve una richiesta dall’utente (user query), il primo passo consiste nel recuperare documenti pertinenti da un database su cui sono stati indicizzati i testi d’interesse; successivamente, questi documenti recuperati (solitamente sono pochi chunk di testo) vengono utilizzati come input per generare una risposta. Questo approccio migliora significativamente l’accuratezza, la pertinenza e la varietà delle risposte, poiché il modello non è più limitato alla conoscenza statica acquisita durante l’addestramento, ma può attingere a informazioni aggiornate e contestualizzate.

Per poter utilizzare un sistema RAG il primo passo è quello di indicizzare i documenti d’interesse in un database vettoriale. Nello specifico, il processo è il seguente:

  1. Ogni documento viene suddiviso in piccole porzioni di testo (chunk) preservando il più possibile la semantica del contenuto.
  2. Per ogni chunk di testo si genera il relativo vettore di embedding tramite l’applicazione di un apposito modello (BERT, GPT, T5, ecc).
  3. Sono memorizzati nel database, per ogni chunk di testo, il contenuto testuale e la sua rappresentazione vettoriale.

La RAG, a questo punto, combina due componenti principali: un sistema di recupero (retriever) e un modello di generazione (generator).

  1. Retriever: Supponendo di aver indicizzato i dati d’interesse in un database vettoriale come descritto sopra, il primo step è il recupero delle informazioni. Data una user query, questa viene trasformata nella sua rappresentazione vettoriale tramite l’uso dello stesso modello di embedding utilizzato per indicizzare la nuova base di conoscenza del database. Il retriever cerca i dati più pertinenti alla user query mediante l’utilizzo della ricerca vettoriale, ovvero ricerca tutti quei chunk di testo che massimizzano la similarità del coseno rispetto alla user query.
  2. Generator: Una volta recuperati i documenti pertinenti, il modello di generazione entra in gioco. Questo componente prende la query originale e i documenti recuperati come input e genera una risposta che combina le informazioni provenienti sia dalla conoscenza pre-addestrata del modello che dai documenti recuperati. Un aspetto cruciale della RAG è che i documenti recuperati non vengono semplicemente “incollati” nella risposta; piuttosto, vengono utilizzati come contesto per guidare la generazione della risposta, arricchendola con dettagli specifici e accurati.

Un tipico esempio di prompt da inviare al modello generativo che comprende sia la user query che i documenti più pertinenti è:

Genera una risposta alla seguente richiesta utente
USER_QUERY
utilizzando i seguenti documenti come knowledge base
RETRIEVED_DOCUMENTS

Conclusioni

L’approccio RAG offre numerosi vantaggi rispetto ai modelli generativi tradizionali. Oltre a fornire risposte più accurate e aggiornate, la tecnologia RAG permette un adattamento a nuovi domini di conoscenza con maggiore rapidità, riducendo la necessità di un costante riaddestramento del modello generativo. Tuttavia, è importante notare che l’efficacia della RAG dipende dalla qualità e dalla pertinenza delle informazioni disponibili nel sistema di recupero. Inoltre, la complessità computazionale di questo approccio può essere maggiore rispetto ai modelli generativi puri, richiedendo risorse più significative in termini di calcolo e memoria.

Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Luca Vinciguerra 300x300
Machine Learning Engineer specializzato nel Natural Language Processing. Appassionato di Intelligenza Artificiale, Coding e tecnologia in generale. Aspetta l'avvento di Skynet.
Aree di competenza: Artificial Intelligence Engineer, Machine Learning & Deep Learning Specialist, Python Developer

Articoli in evidenza

Immagine del sitoCybercrime
Colpo al cuore del cybercrime: RAMP messo offline. Il “tempio” del ransomware cade!
Bajram Zeqiri - 28/01/2026

Il forum RAMP (Russian Anonymous Marketplace), uno dei principali punti di riferimento del cybercrime underground internazionale, è stato ufficialmente chiuso e sequestrato dalle forze dell’ordine statunitensi. La notizia è emersa dopo che il dominio associato…

Immagine del sitoDiritti
La privacy è morta? No, ma è in coma! Cosa celebriamo davvero oggi 28 gennaio
Silvia Felici - 28/01/2026

Oggi è il 28 gennaio e, come ogni anno da un bel po’ di tempo a questa parte, ci ritroviamo a celebrare la Giornata europea della protezione dei dati. È una roba che nasce nel…

Immagine del sitoCyber News
OpenSSL: 12 bug di sicurezza rilevati tra i quali una vulnerabilità critica
Bajram Zeqiri - 28/01/2026

Un aggiornamento di sicurezza è stato rilasciato dai responsabili della manutenzione di OpenSSL, la libreria crittografica, al fine di risolvere circa una dozzina di vulnerabilità che includono, tra gli altri, errori logici e corruzioni di…

Immagine del sitoCyberpolitica
Autonomia Digitale: La Francia dice addio a Teams e Zoom dal 2027
Silvia Felici - 28/01/2026

Non è la prima iniziativa che spunta su questo fronte, ultimamente. Anzi, se ne sentono diverse, una dopo l’altra. Ed è quasi inevitabile: autonomia tecnologica e sicurezza nazionale stanno diventando un terreno sempre più battuto,…

Immagine del sitoCultura
Il ransomware non blocca i server, blocca il credito. Il lato finanziario della cybersecurity
Antonio Piovesan - 27/01/2026

C’è questa idea sbagliata, un po’ romantica volendo, per cui il ransomware è “roba da IT”: qualche server in crisi, due notti in bianco, poi si riparte e fine… La realtà, soprattutto per un’azienda quotata…