
Simone Raponi : 2 Agosto 2023 22:22
Dopo aver esaminato le basi e l’architettura delle Convolutional Neural Networks (CNN) nei nostri precedenti articoli, ora è il momento di addentrarci nel processo di addestramento di queste affascinanti reti. In questo articolo, discuteremo la backpropagation, il metodo che le reti neurali utilizzano per apprendere dai dati, e presenteremo vari algoritmi di ottimizzazione utilizzati per migliorare l’efficienza e la precisione dell’apprendimento.
La backpropagation è il motore che permette alle reti neurali di apprendere dai dati. Questo metodo, derivato dal calcolo differenziale, permette alla rete di aggiustare i suoi pesi e bias in modo da minimizzare la differenza tra le sue previsioni e i dati reali.
Iniziamo con una fase chiamata “feedforward”, durante la quale i dati vengono passati attraverso la rete, strato per strato, fino a produrre una previsione. Poi, la rete calcola una funzione di costo (o perdita), che misura quanto le sue previsioni differiscono dai dati reali. Infine, nella fase di backpropagation, la rete calcola il gradiente della funzione di costo rispetto ai suoi pesi e bias e li aggiorna di conseguenza.
CVE Enrichment Mentre la finestra tra divulgazione pubblica di una vulnerabilità e sfruttamento si riduce sempre di più, Red Hot Cyber ha lanciato un servizio pensato per supportare professionisti IT, analisti della sicurezza, aziende e pentester: un sistema di monitoraggio gratuito che mostra le vulnerabilità critiche pubblicate negli ultimi 3 giorni dal database NVD degli Stati Uniti e l'accesso ai loro exploit su GitHub.
Cosa trovi nel servizio: ✅ Visualizzazione immediata delle CVE con filtri per gravità e vendor. ✅ Pagine dedicate per ogni CVE con arricchimento dati (NIST, EPSS, percentile di rischio, stato di sfruttamento CISA KEV). ✅ Link ad articoli di approfondimento ed exploit correlati su GitHub, per ottenere un quadro completo della minaccia. ✅ Funzione di ricerca: inserisci un codice CVE e accedi subito a insight completi e contestualizzati.
Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì. |
La funzione di costo è una misura di quanto le previsioni della rete differiscono dai dati reali. Le funzioni di costo più comunemente utilizzate nelle CNN includono la cross-entropy per i problemi di classificazione e l’errore quadratico medio (Mean Squared Error, MSE) per i problemi di regressione.
In entrambi i casi, l’obiettivo della backpropagation è minimizzare il valore della funzione di costo aggiustando i pesi e i bias della rete. In altre parole, l’obiettivo è trovare la combinazione di pesi e bias che rende le previsioni della rete il più vicino possibile ai dati reali.
Il gradient descent è l’algoritmo più semplice e più utilizzato per minimizzare la funzione di costo. L’idea di base è quella di cambiare i pesi e i bias della rete in direzione opposta al gradiente della funzione di costo. Questo processo viene ripetuto per un certo numero di volte (o “epoche“), fino a quando la rete non riesce più a migliorare significativamente le sue previsioni.
Il gradient descent, tuttavia, non è l’unico algoritmo di ottimizzazione disponibile per le reti neurali. Negli ultimi anni, i ricercatori hanno sviluppato una serie di algoritmi di ottimizzazione avanzati che cercano di risolvere alcuni dei problemi associati al gradient descent.
Alcuni di questi algoritmi, come il gradient descent with Momentum, Adagrad e Adam, utilizzano tecniche avanzate come l’adattamento del learning rate e la media mobile dei gradienti per accelerare l’apprendimento e migliorare la precisione delle previsioni della rete.
Oltre ai problemi di ottimizzazione, le reti neurali devono anche affrontare il problema dell’overfitting e dell’underfitting. L’overfitting si verifica quando la rete si adatta troppo bene ai dati di addestramento e perde la sua capacità di generalizzare a nuovi dati. D’altra parte, l’underfitting si verifica quando la rete non è in grado di catturare adeguatamente i pattern nei dati di addestramento.
Per combattere l’overfitting e l’underfitting, i ricercatori hanno sviluppato una serie di tecniche di regolarizzazione, come la regolarizzazione L1 e L2, il dropout e l’early stopping. Queste tecniche possono aiutare a prevenire l’overfitting riducendo la complessità del modello o introducendo un certo grado di “rumore” nel processo di addestramento.
Infine, dopo aver addestrato la nostra rete e averla ottimizzata per prevenire l’overfitting e l’underfitting, è il momento di affinare i dettagli. Questo è il ruolo dell’Hyperparameter Tuning, un processo che coinvolge l’aggiustamento di vari parametri della rete, come il learning rate, il numero di epoche, la dimensione del batch e così via.
L’addestramento e l’ottimizzazione di una Convolutional Neural Network sono un processo complesso e multiforme che richiede una solida comprensione dei principi fondamentali dell’apprendimento automatico e delle reti neurali. Tuttavia, con una conoscenza adeguata dei metodi di addestramento e di ottimizzazione, le CNN possono diventare strumenti potenti per l’elaborazione e l’analisi di immagini e altri dati visivi.
Grazie per aver letto questa serie di articoli sulle Convolutional Neural Networks. Speriamo che vi sia stata utile e vi abbia dato un’idea di come funzionano queste incredibili architetture di apprendimento automatico.
Per ulteriori approfondimenti
Simone Raponi
Un nuovo allarme sulla sicurezza nel mondo degli investimenti online viene portato all’attenzione da Paragon sec, azienda attiva nel settore della cybersecurity, che ha pubblicato su LinkedIn un pos...

Un’indagine su forum e piattaforme online specializzate ha rivelato l’esistenza di un fiorente mercato nero di account finanziari europei. Un’entità denominata “ASGARD”, sta pubblicizzando ...

C’è un fenomeno noto ma di cui si parla poco, e che ogni giorno colpisce senza distinzione: la pornografia algoritmica. È una forma di inquinamento semantico che trasforma l’identità digitale i...

Google si avvicina alla presentazione ufficiale di Gemini 3.0, il nuovo modello di intelligenza artificiale destinato a rappresentare uno dei passaggi più rilevanti nella strategia dell’azienda. Se...

La sicurezza del Louvre è di nuovo sotto accusa dopo che alcuni burloni sono riusciti a ingannare le guardie e ad appendere il loro dipinto nella stessa stanza della Monna Lisa. Il duo belga Neel e S...