Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Condividi la tua difesa. Incoraggia l'eccellenza.
La vera forza della cybersecurity risiede
nell'effetto moltiplicatore della conoscenza.
Cyber Offensive Fundamentals 970x120 1
TM RedHotCyber 320x100 042514
DDoS per i sistemi di machine learning.

DDoS per i sistemi di machine learning.

30 Maggio 2021 10:00

Un nuovo attacco contraddittorio, sviluppato dagli scienziati dell’Università del Maryland, College Park, può costringere i sistemi di apprendimento automatico (AI) a rallentare la loro elaborazione fino pressoché a fermarsi in alcune applicazioni.

Presentata alla Conferenza internazionale sulle rappresentazioni dell’apprendimento (ICLR), la tecnica neutralizza le tecniche di ottimizzazione che accelerano il funzionamento delle reti neurali profonde.

Le reti neurali profonde richiedono gigabyte di memoria e processori molto potenti, che non possono girare su dispositivi IoT, smartphone e dispositivi indossabili. Molti di questi dispositivi devono inviare i propri dati a un server cloud in grado di eseguire modelli di deep learning.

Per superare queste sfide, i ricercatori hanno inventato diverse tecniche per ottimizzare le reti neurali per piccoli dispositivi attraverso le cosiddette “architetture multiuscita”, una tecnica di ottimizzazione che fa sì che le reti neurali interrompano il calcolo non appena raggiungono una soglia accettabile.

“I modelli di uscita sono un concetto relativamente nuovo, ma c’è un interesse crescente”

ha detto al Daily Swig Tudor Dumitras, ricercatore presso l’Università del Maryland.

“Questo perché i modelli di deep learning stanno diventando sempre più costosi, dal punto di vista computazionale, e i ricercatori cercano modi per renderli più efficienti”.

Dumitras ei suoi collaboratori hanno sviluppato un attacco avversario di rallentamento che prende di mira l’efficacia delle reti neurali multiuscita. Chiamato DeepSloth, l’attacco apporta sottili modifiche ai dati di input per impedire alle reti neurali di uscire anticipatamente dal circuito e quindi costringerle a eseguire più calcoli del necessario.

“Gli attacchi di rallentamento hanno il potenziale di negare i vantaggi delle architetture multiuscita”

ha affermato Dumitras.

“Queste architetture possono dimezzare il consumo energetico di un modello DNN al momento dell’inferenza e abbiamo dimostrato che per qualsiasi input possiamo creare una perturbazione che cancelli completamente quei risparmi”.

I ricercatori hanno testato DeepSloth su varie architetture multiuscita.

Nei casi in cui gli aggressori avevano piena conoscenza dell’architettura del modello di destinazione, gli attacchi di rallentamento hanno ridotto l’efficacia dell’uscita anticipata del 90-100%. Ma anche quando l’attaccante non ha informazioni esatte sul modello bersaglio, DeepSloth ha comunque ridotto l’efficacia del 5-45%.

Questo è l’equivalente di un attacco DoS (Denial of Service) alle reti neurali.

Quando i modelli vengono serviti direttamente da un server, DeepSloth può occupare le risorse del server e impedirgli di utilizzarle secondo le sue necessità.

“In uno scenario tipico delle implementazioni IoT, in cui il modello è partizionato tra i dispositivi edge e il cloud, DeepSloth amplifica la latenza di 1,5-5 volte, annullando i vantaggi del partizionamento del modello”

ha affermato Dumitras.

Ciò potrebbe far sì che il dispositivo periferico non rispetti le scadenze critiche, ad esempio in un programma di monitoraggio per anziani che utilizza l’ intelligenza artificiale per rilevare rapidamente gli incidenti e richiedere aiuto se necessario “.

Fonte

https://portswigger.net/daily-swig/amp/deepsloth-researchers-find-denial-of-service-equivalent-against-machine-learning-systems

Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Cropped RHC 3d Transp2 1766828557 300x300
La redazione di Red Hot Cyber è composta da professionisti del settore IT e della sicurezza informatica, affiancati da una rete di fonti qualificate che operano anche in forma riservata. Il team lavora quotidianamente nell’analisi, verifica e pubblicazione di notizie, approfondimenti e segnalazioni su cybersecurity, tecnologia e minacce digitali, con particolare attenzione all’accuratezza delle informazioni e alla tutela delle fonti. Le informazioni pubblicate derivano da attività di ricerca diretta, esperienza sul campo e contributi provenienti da contesti operativi nazionali e internazionali.

Articoli in evidenza

Immagine del sitoCybercrime
Codici QR dannosi: la nuova frontiera del phishing passa dall’HTML
Redazione RHC - 08/01/2026

Sappiamo che i criminal hacker riescono sempre a sorprenderci, e anche questa volta ci stupiscono per le innovazione e i modi che inventano per poter superare gli ostacoli, come i filtri di antispam. I criminali…

Immagine del sitoVulnerabilità
Quando anche i backup diventano un vettore d’attacco: Veeam corregge una RCE critica
Redazione RHC - 08/01/2026

I backup sono generalmente considerati l’ultima linea di difesa, ma questa settimana Veeam ci ha ricordato che i sistemi di backup stessi possono diventare punti di accesso per gli attacchi. L’azienda ha rilasciato aggiornamenti di…

Immagine del sitoDiritti
Algoritmi e crittografia: un conflitto tra sicurezza tecnica e diritti costituzionali
Paolo Galdieri - 08/01/2026

Il presente contributo approfondisce le criticità tecniche e costituzionali della proposta di Regolamento COM/2022/209 CSAR(Child Sexual Abuse Regulation). Questo studio fa seguito all’inquadramento generale già delineato e si concentra sul conflitto tra l’integrità dei sistemi…

Immagine del sitoCybercrime
Quando l’individuazione degli attacchi diventa automatizzata, il rilevamento smette di scalare
Alexander Rogan - 08/01/2026

Per gran parte degli ultimi due decenni, la sicurezza informatica si è fondata su un presupposto fondamentale: le attività malevole possono essere individuate, analizzate e contrastate prima che producano danni significativi. Questo assunto ha modellato…

Immagine del sitoCybercrime
VMware ESXi violato dall’interno: quando l’isolamento delle VM smette di esistere
Redazione RHC - 08/01/2026

Un nuovo report pubblicato dall’Huntress Tactical Response Team documenta un’intrusione estremamente sofisticata individuata nel dicembre 2025, nella quale un attore avanzato è riuscito a compromettere un’infrastruttura VMware ESXi sfruttando una VM escape, ovvero l’evasione da…