Redazione RHC : 30 Maggio 2021 10:00
Un nuovo attacco contraddittorio, sviluppato dagli scienziati dell’Università del Maryland, College Park, può costringere i sistemi di apprendimento automatico (AI) a rallentare la loro elaborazione fino pressoché a fermarsi in alcune applicazioni.
Presentata alla Conferenza internazionale sulle rappresentazioni dell’apprendimento (ICLR), la tecnica neutralizza le tecniche di ottimizzazione che accelerano il funzionamento delle reti neurali profonde.
Distribuisci i nostri corsi di formazione diventando un nostro Affiliato
Se sei un influencer, gestisci una community, un blog, un profilo social o semplicemente hai tanta voglia di diffondere cultura digitale e cybersecurity, questo è il momento perfetto per collaborare con RHC Academy. Unisciti al nostro Affiliate Program: potrai promuovere i nostri corsi online e guadagnare provvigioni ad ogni corso venduto. Fai parte del cambiamento. Diffondi conoscenza, costruisci fiducia, genera valore.
Contattaci tramite WhatsApp al 375 593 1011 per richiedere ulteriori informazioni oppure scriviti alla casella di posta [email protected]
Supporta RHC attraverso:
Ti piacciono gli articoli di Red Hot Cyber? Non aspettare oltre, iscriviti alla newsletter settimanale per non perdere nessun articolo.
Le reti neurali profonde richiedono gigabyte di memoria e processori molto potenti, che non possono girare su dispositivi IoT, smartphone e dispositivi indossabili. Molti di questi dispositivi devono inviare i propri dati a un server cloud in grado di eseguire modelli di deep learning.
Per superare queste sfide, i ricercatori hanno inventato diverse tecniche per ottimizzare le reti neurali per piccoli dispositivi attraverso le cosiddette “architetture multiuscita”, una tecnica di ottimizzazione che fa sì che le reti neurali interrompano il calcolo non appena raggiungono una soglia accettabile.
“I modelli di uscita sono un concetto relativamente nuovo, ma c’è un interesse crescente”
ha detto al Daily Swig Tudor Dumitras, ricercatore presso l’Università del Maryland.
“Questo perché i modelli di deep learning stanno diventando sempre più costosi, dal punto di vista computazionale, e i ricercatori cercano modi per renderli più efficienti”.
Dumitras ei suoi collaboratori hanno sviluppato un attacco avversario di rallentamento che prende di mira l’efficacia delle reti neurali multiuscita. Chiamato DeepSloth, l’attacco apporta sottili modifiche ai dati di input per impedire alle reti neurali di uscire anticipatamente dal circuito e quindi costringerle a eseguire più calcoli del necessario.
“Gli attacchi di rallentamento hanno il potenziale di negare i vantaggi delle architetture multiuscita”
ha affermato Dumitras.
“Queste architetture possono dimezzare il consumo energetico di un modello DNN al momento dell’inferenza e abbiamo dimostrato che per qualsiasi input possiamo creare una perturbazione che cancelli completamente quei risparmi”.
I ricercatori hanno testato DeepSloth su varie architetture multiuscita.
Nei casi in cui gli aggressori avevano piena conoscenza dell’architettura del modello di destinazione, gli attacchi di rallentamento hanno ridotto l’efficacia dell’uscita anticipata del 90-100%. Ma anche quando l’attaccante non ha informazioni esatte sul modello bersaglio, DeepSloth ha comunque ridotto l’efficacia del 5-45%.
Questo è l’equivalente di un attacco DoS (Denial of Service) alle reti neurali.
Quando i modelli vengono serviti direttamente da un server, DeepSloth può occupare le risorse del server e impedirgli di utilizzarle secondo le sue necessità.
“In uno scenario tipico delle implementazioni IoT, in cui il modello è partizionato tra i dispositivi edge e il cloud, DeepSloth amplifica la latenza di 1,5-5 volte, annullando i vantaggi del partizionamento del modello”
ha affermato Dumitras.
Ciò potrebbe far sì che il dispositivo periferico non rispetti le scadenze critiche, ad esempio in un programma di monitoraggio per anziani che utilizza l’ intelligenza artificiale per rilevare rapidamente gli incidenti e richiedere aiuto se necessario “.
Fonte
Nella giornata di ieri, Red Hot Cyber ha pubblicato un approfondimento su una grave vulnerabilità scoperta in SUDO (CVE-2025-32463), che consente l’escalation dei privilegi a root in ambie...
Il Dipartimento di Giustizia degli Stati Uniti ha annunciato la scoperta di un sistema su larga scala in cui falsi specialisti IT provenienti dalla RPDC i quali ottenevano lavoro presso aziende americ...
Le persone tendono a essere più comprensive nei confronti dei chatbot se li considerano interlocutori reali. Questa è la conclusione a cui sono giunti gli scienziati dell’Universit&#x...
La Sfida della Sicurezza nelle Reti Wi-Fi e una Soluzione Adattiva. Nell’era della connettività pervasiva, lo standard IEEE 802.11(meglio noto come Wi-Fi ), è diventato la spina dorsa...
Nel mese di aprile 2025, una valvola idraulica di una diga norvegese è stata forzatamente aperta da remoto per diverse ore, a seguito di un attacco informatico mirato. L’episodio, riportat...
Copyright @ REDHOTCYBER Srl
PIVA 17898011006