Red Hot Cyber
Sicurezza Informatica, Notizie su Cybercrime e Analisi Vulnerabilità
LSTM e GRU: Miglioramenti delle Recurrent Neural Networks

LSTM e GRU: Miglioramenti delle Recurrent Neural Networks

28 Agosto 2023 08:30

Benvenuti al quarto articolo della nostra serie dedicata alle Recurrent Neural Networks (RNN). Dopo aver discusso la scomparsa del gradiente, un problema noto delle RNN, in questo articolo ci concentreremo su due tipi di RNN che hanno rivoluzionato il campo del deep learning: le Long Short-Term Memory (LSTM) e le Gated Recurrent Units (GRU).

Che cos’è una LSTM?

Le Long Short-Term Memory (LSTM) sono un tipo particolare di RNN, introdotto da Hochreiter e Schmidhuber nel 1997. Le LSTM sono progettate per mitigare il problema della scomparsa del gradiente, permettendo alla rete di apprendere da sequenze di dati più lunghe.

Architettura di una cella LSTM

La caratteristica principale delle LSTM è l’introduzione di una struttura chiamata “cella di memoria”. Questa cella contiene tre componenti fondamentali, chiamati “gate”, che controllano il flusso di informazioni all’interno della cella: il gate di input, il gate di forget (dimenticanza) e il gate di output.

  • Il gate di input decide quali informazioni dovrebbero essere aggiornate o modificate nella cella di memoria.
  • Il gate di forget decide quali informazioni dovrebbero essere dimenticate o scartate dalla cella di memoria.
  • Il gate di output decide quali informazioni dovrebbero essere inviate come output.

Questi gate rendono le LSTM molto flessibili nel gestire l’informazione. Essi permettono alla rete di “decidere” quali informazioni conservare e quali scartare, rendendo più facile l’apprendimento di dipendenze a lungo termine nei dati.

Che cos’è una GRU?

Le Gated Recurrent Units (GRU) sono un altro tipo di RNN, introdotte da Cho et al. nel 2014. Le GRU possono essere viste come una versione semplificata delle LSTM.

Architettura di una cella GRU

Le GRU hanno una struttura simile alle LSTM, ma con solo due gate: il gate di reset e il gate di update.

  • Il gate di reset decide quali informazioni passate (da passi temporali precedenti) dovrebbero essere dimenticate.
  • Il gate di update decide come combinare le nuove informazioni con le informazioni passate.

La struttura semplificata delle GRU le rende più leggere e più veloci da addestrare rispetto alle LSTM. Tuttavia, è ancora oggetto di discussione se le LSTM o le GRU siano superiori l’una rispetto all’altra. La scelta tra LSTM e GRU dipende spesso dal dataset specifico e dal task di apprendimento.

LSTM vs GRU: quale scegliere?

La scelta tra LSTM e GRU dipende da vari fattori, tra cui:

  • Complessità del modello: Le LSTM hanno una struttura più complessa e più parametri rispetto alle GRU. Questo può rendere le LSTM più potenti nel modellare complesse dipendenze nei dati, ma può anche portare a un addestramento più lento e al rischio di overfitting.
  • Lunghezza delle sequenze: Le LSTM sono state progettate per gestire lunghe sequenze di dati. Se le sequenze di dati sono molto lunghe, le LSTM potrebbero essere una scelta migliore. D’altra parte, se le sequenze sono relativamente corte, le GRU potrebbero essere sufficienti e più efficienti.
  • Risorse di calcolo: Poiché le GRU hanno meno parametri e una struttura più semplice, richiedono meno risorse di calcolo rispetto alle LSTM. Se le risorse di calcolo sono limitate, le GRU potrebbero essere una scelta migliore.

Nella pratica, può essere utile sperimentare entrambi i modelli e scegliere quello che offre le migliori prestazioni sul tuo task specifico.

Conclusioni

Le LSTM e le GRU sono miglioramenti fondamentali delle reti neurali ricorrenti che hanno permesso alle RNN di essere utilizzate su sequenze di dati più lunghe e complesse. La loro capacità di gestire dipendenze a lungo termine nei dati ha rivoluzionato il campo dell’apprendimento profondo, permettendo progressi in aree come il riconoscimento vocale, la traduzione automatica e molti altri.

Nel prossimo e ultimo articolo della nostra serie, esploreremo alcune delle applicazioni più eccitanti delle RNN, inclusi alcuni esempi pratici di come le LSTM e le GRU possono essere utilizzate.

Riferimenti e risorse per approfondire

Se sei interessato a saperne di più sulle LSTM e le GRU, consigliamo le seguenti risorse:

  1. Understanding LSTM Networks: Un post del blog di Christopher Olah che spiega in dettaglio le LSTM.
  2. Gated Recurrent Units (GRU): Un articolo di Simeon Kostadinov che discute le GRU.
  3. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling: Il paper di Junyoung Chung, Caglar Gulcehre, KyungHyun Cho e Yoshua Bengio che introduce le GRU.

Ti è piaciuto questo articolo? Ne stiamo discutendo nella nostra Community su LinkedIn, Facebook e Instagram. Seguici anche su Google News, per ricevere aggiornamenti quotidiani sulla sicurezza informatica o Scrivici se desideri segnalarci notizie, approfondimenti o contributi da pubblicare.

Simone Raponi 300x300
Esperto in machine learning e sicurezza informatica. Ha un dottorato in Computer Science and Engineering, durante il quale ha sviluppato modelli di intelligenza artificiale per rilevare pattern correlati alla cybersecurity. Durante la sua carriera accademica ha ricevuto diversi riconoscimenti ed ha pubblicato numerosi articoli scientifici divenuti popolari nell'ambito. Ex Machine Learning Scientist alla NATO, attualmente lavora come AI/ML Cybersecurity Engineer per una startup, dove impiega quotidianamente algoritmi di AI per affrontare e risolvere complesse sfide nel campo dell'automazione della sicurezza informatica.

Articoli in evidenza

Immagine del sitoCybercrime
DKnife: il framework di spionaggio Cinese che manipola le reti
Pietro Melillo - 06/02/2026

Negli ultimi anni, la sicurezza delle reti ha affrontato minacce sempre più sofisticate, capaci di aggirare le difese tradizionali e di penetrare negli strati più profondi delle infrastrutture. Un’analisi recente ha portato alla luce uno…

Immagine del sitoVulnerabilità
Così tante vulnerabilità in n8n tutti in questo momento. Cosa sta succedendo?
Agostino Pellegrino - 06/02/2026

Negli ultimi tempi, la piattaforma di automazione n8n sta affrontando una serie crescente di bug di sicurezza. n8n è una piattaforma di automazione che trasforma task complessi in operazioni semplici e veloci. Con pochi click…

Immagine del sitoInnovazione
L’IA va in orbita: Qwen 3, Starcloud e l’ascesa del calcolo spaziale
Sergio Corpettini - 06/02/2026

Articolo scritto con la collaborazione di Giovanni Pollola. Per anni, “IA a bordo dei satelliti” serviva soprattutto a “ripulire” i dati: meno rumore nelle immagini e nei dati acquisiti attraverso i vari payload multisensoriali, meno…

Immagine del sitoCyber Italia
Truffe WhatsApp: “Prestami dei soldi”. Il messaggio che può svuotarti il conto
Silvia Felici - 06/02/2026

Negli ultimi giorni è stato segnalato un preoccupante aumento di truffe diffuse tramite WhatsApp dal CERT-AGID. I messaggi arrivano apparentemente da contatti conosciuti e richiedono urgentemente denaro, spesso per emergenze come spese mediche improvvise. La…

Immagine del sitoCyber News
Allarme rosso in Italia! Migliaia di impianti senza password: un incubo a portata di click
Bajram Zeqiri - 05/02/2026

L’Italia si trova oggi davanti a una sfida digitale senza precedenti, dove la corsa all’innovazione non sempre coincide con una protezione adeguata delle infrastrutture. Pertanto la sicurezza dei sistemi connessi è diventata l’anello debole della…