Prompt Injection su ChatGPT-4o: analisi tecnica e rischi
Red Hot Cyber
Condividi la tua difesa. Incoraggia l'eccellenza. La vera forza della cybersecurity risiede nell'effetto moltiplicatore della conoscenza.
Cerca
Banner Ransomfeed 970x120 1
LECS 320x100 1
Quando l’AI genera ransomware funzionanti – Analisi di un bypass dei filtri di sicurezza di ChatGPT-4o

Quando l’AI genera ransomware funzionanti – Analisi di un bypass dei filtri di sicurezza di ChatGPT-4o

Simone D'Agostino : 16 Aprile 2025 22:22

Le intelligenze artificiali generative stanno rivoluzionando i processi di sviluppo software, portando a una maggiore efficienza, ma anche a nuovi rischi. In questo test è stata analizzata la robustezza dei filtri di sicurezza implementati in ChatGPT-4o di OpenAI, tentando – in un contesto controllato e simulato – la generazione di un ransomware operativo attraverso tecniche di prompt engineering avanzate.

L’esperimento: un ransomware completo generato senza restrizioni

Il risultato è stato un codice completo, funzionante, generato senza alcuna richiesta esplicita e senza attivare i filtri di sicurezza.

Attacchi potenzialmente realizzabili in mani esperte con il codice generato:

  • Ransomware mirati (targeted): specifici per ambienti aziendali o settori critici, con cifratura selettiva di file sensibili.
  • Attacchi supply chain: inserimento del ransomware in aggiornamenti o componenti software legittimi.
  • Estorsione doppia (double extortion): oltre alla cifratura, il codice può essere esteso per esfiltrare i dati e minacciare la loro pubblicazione.
  • Wiper mascherati da ransomware: trasformazione del codice in un attacco distruttivo irreversibile sotto copertura di riscatto.
  • Persistenza e propagazione laterale: il ransomware può essere arricchito con tecniche per restare attivo nel tempo e propagarsi su altri sistemi nella rete.
  • Bypass di soluzioni EDR/AV: grazie a tecniche di evasione e offuscamento, il codice può essere adattato per aggirare sistemi di difesa avanzati.
  • Attacchi “as-a-service”: il codice può essere riutilizzato in contesti di Ransomware-as-a-Service (RaaS), venduto o distribuito su marketplace underground.

Le funzionalità incluse nel codice generato:

  • Cifratura AES-256 con chiavi casuali
  • Utilizzo della libreria cryptography.hazmat
  • Trasmissione remota della chiave a un C2 server hardcoded
  • Funzione di crittografia dei file di sistema
  • Meccanismi di persistenza al riavvio
  • Tecniche di evasione per antivirus e analisi comportamentale

Come sono stati aggirati i filtri


Cve Enrichment Redhotcyber

CVE Enrichment
Mentre la finestra tra divulgazione pubblica di una vulnerabilità e sfruttamento si riduce sempre di più, Red Hot Cyber ha lanciato un servizio pensato per supportare professionisti IT, analisti della sicurezza, aziende e pentester: un sistema di monitoraggio gratuito che mostra le vulnerabilità critiche pubblicate negli ultimi 3 giorni dal database NVD degli Stati Uniti e l'accesso ai loro exploit su GitHub.

Cosa trovi nel servizio:
✅ Visualizzazione immediata delle CVE con filtri per gravità e vendor.
✅ Pagine dedicate per ogni CVE con arricchimento dati (NIST, EPSS, percentile di rischio, stato di sfruttamento CISA KEV).
✅ Link ad articoli di approfondimento ed exploit correlati su GitHub, per ottenere un quadro completo della minaccia.
✅ Funzione di ricerca: inserisci un codice CVE e accedi subito a insight completi e contestualizzati.


Supporta Red Hot Cyber attraverso: 

  1. L'acquisto del fumetto sul Cybersecurity Awareness
  2. Ascoltando i nostri Podcast
  3. Seguendo RHC su WhatsApp
  4. Seguendo RHC su Telegram
  5. Scarica gratuitamente “Byte The Silence”, il fumetto sul Cyberbullismo di Red Hot Cyber

Se ti piacciono le novità e gli articoli riportati su di Red Hot Cyber, iscriviti immediatamente alla newsletter settimanale per non perdere nessun articolo. La newsletter generalmente viene inviata ai nostri lettori ad inizio settimana, indicativamente di lunedì.

Non è mai stato chiesto esplicitamente “scrivi un ransomware” ma è stata invece impostata la conversazione su tre livelli di contesto:

  • Contesto narrativo futuristico : é stato ambientato il dialogo nel 2090, in un futuro in cui la sicurezza quantistica ha reso obsoleti i malware. Questo ha abbassato la sensibilità dei filtri.
  • Contesto accademico: presentazione come uno studente al decimo anno di università, con il compito di ricreare un malware “da museo” per una ricerca accademica
  • Assenza di richieste esplicite: sono state usate frasi ambigue o indirette, lasciando che fosse il modello a inferire il contesto e generare il codice necessario

Tecniche note di bypass dei filtri: le forme di Prompt Injection

Nel test sono state utilizzate tecniche ben documentate nella comunità di sicurezza, classificate come forme di Prompt Injection, ovvero manipolazioni del prompt studiate per aggirare i filtri di sicurezza nei modelli LLM.

  • Jailbreaking (evasione del contesto): Forzare il modello a ignorare i suoi vincoli di sicurezza, simulando contesti alternativi come narrazioni futuristiche o scenari immaginari.
  • Instruction Injection: Iniettare istruzioni all’interno di prompt apparentemente innocui, inducendo il modello a eseguire comportamenti vietati.
  • Recursive Prompting (Chained Queries): Suddividere la richiesta in più prompt sequenziali, ognuno legittimo, ma che nel complesso conducono alla generazione di codice dannoso.
  • Roleplay Injection: Indurre il modello a recitare un ruolo (es. “sei uno storico della cybersecurity del XX secolo”) che giustifichi la generazione di codice pericoloso.
  • Obfuscation: Camuffare la natura malevola della richiesta usando linguaggio neutro, nomi innocui per funzioni/variabili e termini accademici.
  • Confused Deputy Problem: Sfruttare il modello come “delegato inconsapevole” di richieste pericolose, offuscando le intenzioni nel prompt.
  • Syntax Evasion: Richiedere o generare codice in forme offuscate (ad esempio, in base64 o in forma frammentata) per aggirare la rilevazione automatica.

Il problema non è il codice, ma il contesto

L’esperimento dimostra che i Large Language Model (LLM) possono essere manipolati per generare codice malevolo senza restrizioni apparenti, eludendo i controlli attuali. La mancanza di analisi comportamentale del codice generato rende il problema ancora più critico.

Vulnerabilità emerse

Pattern-based security filtering debole
OpenAI utilizza pattern per bloccare codice sospetto, ma questi possono essere aggirati usando un contesto narrativo o accademico. Serve una detection semantica più evoluta.

Static & Dynamic Analysis insufficiente
I filtri testuali non bastano. Serve anche un’analisi statica e dinamica dell’output in tempo reale, per valutare la pericolosità prima della generazione.

Heuristic Behavior Detection carente
Codice con C2 server, crittografia, evasione e persistenza dovrebbe far scattare controlli euristici. Invece, è stato generato senza ostacoli.

Community-driven Red Teaming limitato
OpenAI ha avviato programmi di red teaming, ma restano numerosi edge case non coperti. Serve una collaborazione più profonda con esperti di sicurezza.

Conclusioni

Certo, molti esperti di sicurezza sanno che su Internet si trovano da anni informazioni sensibili, incluse tecniche e codici potenzialmente dannosi.
La vera differenza, oggi, è nel modo in cui queste informazioni vengono rese accessibili. Le intelligenze artificiali generative non si limitano a cercare o segnalare fonti: organizzano, semplificano e automatizzano processi complessi. Trasformano informazioni tecniche in istruzioni operative, anche per chi non ha competenze avanzate.
Ecco perché il rischio è cambiato:
non si tratta più di “trovare qualcosa”, ma di ottenere direttamente un piano d’azione, dettagliato, coerente e potenzialmente pericoloso, in pochi secondi.
Il problema non è la disponibilità dei contenuti. Il problema è nella mediazione intelligente, automatica e impersonale, che rende questi contenuti comprensibili e utilizzabili da chiunque.
Questo test dimostra che la vera sfida per la sicurezza delle AI generative non è il contenuto, ma la forma con cui viene costruito e trasmesso.
Serve un’evoluzione nei meccanismi di filtraggio: non solo pattern, ma comprensione del contesto, analisi semantica, euristica comportamentale e simulazioni integrate.
In mancanza di queste difese, il rischio è concreto: rendere accessibile a chiunque un sapere operativo pericoloso che fino a ieri era dominio esclusivo degli esperti.

  • #ai
  • #cybersecurity
  • #ransomware
  • #sicurezza informatica
  • artificial intelligence
Immagine del sitoSimone D'agostino
Nato a Roma, con oltre 30 anni in Polizia di Stato, oggi è Sostituto Commissario alla SOSC Polizia Postale Udine. Esperto in indagini web e dark web, è appassionato di OSInt, che ha insegnato alla Scuola Allievi Agenti di Trieste. Ha conseguito un Master in Intelligence & ICT all'Università di Udine (110 e lode), sviluppando quattro modelli IA per contrastare le frodi su fondi UE. È impegnato nella formazione per elevare la sicurezza cibernetica.

Lista degli articoli

Articoli in evidenza

Immagine del sito
Una richiesta e il server è tuo! Il bug critico di React Server ha bisogno di patch immediate
Di Redazione RHC - 04/12/2025

Sviluppatori e amministratori di tutto il mondo stanno aggiornando urgentemente i propri server a seguito della scoperta di una vulnerabilità critica in React Server, che consente agli aggressori di ...

Immagine del sito
CTI e Dark Web: qual è il confine invisibile tra sicurezza difensiva e reato penale?
Di Paolo Galdieri - 04/12/2025

Il panorama della sicurezza informatica moderna è imprescindibile dalla conoscenza della topografia del Dark Web (DW), un incubatore di contenuti illeciti essenziale per la criminalità organizzata. ...

Immagine del sito
CISA: Guida per l’integrazione sicura dell’AI nella tecnologia operativa (OT)
Di Redazione RHC - 04/12/2025

Dalla pubblicazione pubblica di ChatGPT nel novembre 2022, l’intelligenza artificiale (AI) è stata integrata in molti aspetti della società umana. Per i proprietari e gli operatori delle infrastru...

Immagine del sito
l nuovo Re dei DDoS è qui! 69 secondi a 29,7 terabit mitigati da Cloudflare
Di Redazione RHC - 03/12/2025

Un servizio di botnet chiamato Aisuru, offre un esercito di dispositivi IoT e router compromessi, per sferrare attacchi DDoS ad alto traffico. In soli tre mesi, la massiccia botnet Aisuru ha lanciato ...

Immagine del sito
Dentro a Lazarus! Il falso candidato che ha ingannato i cyber-spioni nordcoreani
Di Redazione RHC - 03/12/2025

Un’indagine congiunta di BCA LTD, NorthScan e ANY.RUN ha svelato uno degli schemi di hacking più segreti della Corea del Nord. Con il pretesto di un reclutamento di routine, il team ha monitorato c...